Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem J ; 481(13): 823-838, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38780411

RESUMO

The reaction centre-light harvesting 1 (RC-LH1) core complex is indispensable for anoxygenic photosynthesis. In the purple bacterium Rhodobacter (Rba.) sphaeroides RC-LH1 is produced both as a monomer, in which 14 LH1 subunits form a C-shaped antenna around 1 RC, and as a dimer, where 28 LH1 subunits form an S-shaped antenna surrounding 2 RCs. Alongside the five RC and LH1 subunits, an additional polypeptide known as PufX provides an interface for dimerisation and also prevents LH1 ring closure, introducing a channel for quinone exchange that is essential for photoheterotrophic growth. Structures of Rba. sphaeroides RC-LH1 complexes revealed several new components; protein-Y, which helps to form the quinone channel; protein-Z, of unknown function and seemingly unique to dimers; and a tightly bound sulfoquinovosyl diacylglycerol (SQDG) lipid that interacts with two PufX arginine residues. This lipid lies at the dimer interface alongside weak density for a second molecule, previously proposed to be an ornithine lipid. In this work we have generated strains of Rba. sphaeroides lacking protein-Y, protein-Z, SQDG or ornithine lipids to assess the roles of these previously unknown components in the assembly and activity of RC-LH1. We show that whilst the removal of either protein-Y, protein-Z or ornithine lipids has only subtle effects, SQDG is essential for the formation of RC-LH1 dimers but its absence has no functional effect on the monomeric complex.


Assuntos
Proteínas de Bactérias , Complexos de Proteínas Captadores de Luz , Multimerização Proteica , Rhodobacter sphaeroides , Rhodobacter sphaeroides/metabolismo , Rhodobacter sphaeroides/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Glicolipídeos/metabolismo , Glicolipídeos/química , Modelos Moleculares , Cristalografia por Raios X
2.
Biosci Rep ; 44(2)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38227291

RESUMO

Light-harvesting 2 (LH2) and reaction-centre light-harvesting 1 (RC-LH1) complexes purified from the photosynthetic bacterium Rhodobacter (Rba.) sphaeroides were reconstituted into proteoliposomes either separately, or together at three different LH2:RC-LH1 ratios, for excitation energy transfer studies. Atomic force microscopy (AFM) was used to investigate the distribution and association of the complexes within the proteoliposome membranes. Absorption and fluorescence emission spectra were similar for LH2 complexes in detergent and liposomes, indicating that reconstitution retains the structural and optical properties of the LH2 complexes. Analysis of fluorescence emission shows that when LH2 forms an extensive series of contacts with other such complexes, fluorescence is quenched by 52.6 ± 1.4%. In mixed proteoliposomes, specific excitation of carotenoids in LH2 donor complexes resulted in emission of fluorescence from acceptor RC-LH1 complexes engineered to assemble with no carotenoids. Extents of energy transfer were measured by fluorescence lifetime microscopy; the 0.72 ± 0.08 ns lifetime in LH2-only membranes decreases to 0.43 ± 0.04 ns with a ratio of 2:1 LH2 to RC-LH1, and to 0.35 ± 0.05 ns for a 1:1 ratio, corresponding to energy transfer efficiencies of 40 ± 14% and 51 ± 18%, respectively. No further improvement is seen with a 0.5:1 LH2 to RC-LH1 ratio. Thus, LH2 and RC-LH1 complexes perform their light harvesting and energy transfer roles when reconstituted into proteoliposomes, providing a way to integrate native, non-native, engineered and de novo designed light-harvesting complexes into functional photosynthetic systems.


Assuntos
Proteolipídeos , Rhodobacter sphaeroides , Rhodobacter sphaeroides/química , Rhodobacter sphaeroides/metabolismo , Citoplasma/metabolismo , Fotossíntese , Transferência de Energia , Proteínas de Bactérias/metabolismo
3.
Biosci Rep ; 43(5)2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37098760

RESUMO

Chlorophototrophic organisms have a charge-separating reaction centre (RC) complex that receives energy from a dedicated light-harvesting (LH) antenna. In the purple phototrophic bacteria, these two functions are embodied by the 'core' photosynthetic component, the RC-LH1 complex. RC-LH1 complexes sit within a membrane bilayer, with the central RC wholly or partly surrounded by a curved array of LH1 subunits that bind a series of bacteriochlorophyll (BChl) and carotenoid pigments. Decades of research have shown that the absorption of light initiates a cascade of energy, electron, and proton transfers that culminate in the formation of a quinol, which is subsequently oxidized by the cytochrome bc1 complex. However, a full understanding of all these processes, from femtosecond absorption of light to millisecond quinone diffusion, requires a level of molecular detail that was lacking until the remarkable recent upsurge in the availability of RC-LH1 structures. Here, we survey 13 recently determined RC-LH1 assemblies, and we compare the precise molecular arrangements of pigments and proteins that allow efficient light absorption and the transfer of energy, electrons and protons. We highlight shared structural features, as well as differences that span the bound pigments and cofactors, the structures of individual subunits, the overall architecture of the complexes, and the roles of additional subunits newly identified in just one or a few species. We discuss RC-LH1 structures in the context of prior biochemical and spectroscopic investigations, which together enhance our understanding of the molecular mechanisms of photosynthesis in the purple phototrophic bacteria. A particular emphasis is placed on how the remarkable and unexpected structural diversity in RC-LH1 complexes demonstrates different evolutionary solutions for maximising pigment density for optimised light harvesting, whilst balancing the requirement for efficient quinone diffusion between RC and cytochrome bc1 complexes through the encircling LH1 complex.


Assuntos
Carotenoides , Fotossíntese , Carotenoides/química , Carotenoides/metabolismo , Citoplasma/metabolismo , Benzoquinonas/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(12): e2217922120, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36913593

RESUMO

Cytochrome bc1 complexes are ubiquinol:cytochrome c oxidoreductases, and as such, they are centrally important components of respiratory and photosynthetic electron transfer chains in many species of bacteria and in mitochondria. The minimal complex has three catalytic components, which are cytochrome b, cytochrome c1, and the Rieske iron-sulfur subunit, but the function of mitochondrial cytochrome bc1 complexes is modified by up to eight supernumerary subunits. The cytochrome bc1 complex from the purple phototrophic bacterium Rhodobacter sphaeroides has a single supernumerary subunit called subunit IV, which is absent from current structures of the complex. In this work we use the styrene-maleic acid copolymer to purify the R. sphaeroides cytochrome bc1 complex in native lipid nanodiscs, which retains the labile subunit IV, annular lipids, and natively bound quinones. The catalytic activity of the four-subunit cytochrome bc1 complex is threefold higher than that of the complex lacking subunit IV. To understand the role of subunit IV, we determined the structure of the four-subunit complex at 2.9 Å using single particle cryogenic electron microscopy. The structure shows the position of the transmembrane domain of subunit IV, which lies across the transmembrane helices of the Rieske and cytochrome c1 subunits. We observe a quinone at the Qo quinone-binding site and show that occupancy of this site is linked to conformational changes in the Rieske head domain during catalysis. Twelve lipids were structurally resolved, making contacts with the Rieske and cytochrome b subunits, with some spanning both of the two monomers that make up the dimeric complex.


Assuntos
Rhodobacter sphaeroides , Rhodobacter sphaeroides/química , Citocromos c , Citocromos b , Estireno , Microscopia Crioeletrônica , Quinonas , Lipídeos , Complexo III da Cadeia de Transporte de Elétrons , Oxirredução
5.
Biochem J ; 480(6): 455-460, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36988315

RESUMO

The reaction centre (RC) in purple phototrophic bacteria is encircled by the primary light-harvesting complex 1 (LH1) antenna, forming the RC-LH1 'core' complex. The Qy absorption maximum of LH1 complexes ranges from ∼875-960 nm in bacteriochlorophyll (BChl) a-utilising organisms, to 1018 nm in the BChl b-containing complex from Blastochloris (Blc.) viridis. The red-shifted absorption of the Blc. viridis LH1 was predicted to be due in part to the presence of the γ subunit unique to Blastochloris spp., which binds to the exterior of the complex and is proposed to increase packing and excitonic coupling of the BChl pigments. The study by Namoon et al. provides experimental evidence for the red-shifting role of the γ subunit and an evolutionary rationale for its incorporation into LH1. The authors show that cells producing RC-LH1 lacking the γ subunit absorb maximally at 972 nm, 46 nm to the blue of the wild-type organism. Wavelengths in the 900-1000 nm region of the solar spectrum transmit poorly through water, thus γ shifts absorption of LH1 to a region where photons have lower energy but are more abundant. Complementation of the mutant with a divergent copy of LH1γ resulted in an intermediate red shift, revealing the possibility of tuning LH1 absorption using engineered variants of this subunit. These findings provide new insights into photosynthesis in the lowest energy phototrophs and how the absorption properties of light-harvesting complexes are modified by the recruitment of additional subunits.


Assuntos
Hyphomicrobiaceae , Complexos de Proteínas Captadores de Luz , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Fotossíntese , Hyphomicrobiaceae/metabolismo , Proteobactérias , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
6.
J Photochem Photobiol B ; 237: 112585, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36334507

RESUMO

The Light-Harvesting (LH) pigment-protein complexes found in photosynthetic organisms have the role of absorbing solar energy with high efficiency and transferring it to reaction centre complexes. LH complexes contain a suite of pigments that each absorb light at specific wavelengths, however, the natural combinations of pigments within any one protein complex do not cover the full range of solar radiation. Here, we provide an in-depth comparison of the relative effectiveness of five different organic "dye" molecules (Texas Red, ATTO, Cy7, DiI, DiR) for enhancing the absorption range of two different LH membrane protein complexes (the major LHCII from plants and LH2 from purple phototrophic bacteria). Proteoliposomes were self-assembled from defined mixtures of lipids, proteins and dye molecules and their optical properties were quantified by absorption and fluorescence spectroscopy. Both lipid-linked dyes and alternative lipophilic dyes were found to be effective excitation energy donors to LH protein complexes, without the need for direct chemical or generic modification of the proteins. The Förster theory parameters (e.g., spectral overlap) were compared between each donor-acceptor combination and found to be good predictors of an effective dye-protein combination. At the highest dye-to-protein ratios tested (over 20:1), the effective absorption strength integrated over the full spectral range was increased to ∼180% of its natural level for both LH complexes. Lipophilic dyes could be inserted into pre-formed membranes although their effectiveness was found to depend upon favourable physicochemical interactions. Finally, we demonstrated that these dyes can also be effective at increasing the spectral range of surface-supported models of photosynthetic membranes, using fluorescence microscopy. The results of this work provide insight into the utility of self-assembled lipid membranes and the great flexibility of LH complexes for interacting with different dyes.


Assuntos
Complexos de Proteínas Captadores de Luz , Fotossíntese , Complexos de Proteínas Captadores de Luz/química , Tilacoides/metabolismo , Proteobactérias/metabolismo , Corantes/metabolismo
7.
Microorganisms ; 10(9)2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36144332

RESUMO

Carotenoids are crucial photosynthetic pigments utilized for light harvesting, energy transfer, and photoprotection. Although most of the enzymes involved in carotenoid biosynthesis in chlorophototrophs are known, some are yet to be identified or fully characterized in certain organisms. A recently characterized enzyme in oxygenic phototrophs is 15-cis-zeta(ζ)-carotene isomerase (Z-ISO), which catalyzes the cis-to-trans isomerization of the central 15-15' cis double bond in 9,15,9'-tri-cis-ζ-carotene to produce 9,9'-di-cis-ζ-carotene during the four-step conversion of phytoene to lycopene. Z-ISO is a heme B-containing enzyme best studied in angiosperms. Homologs of Z-ISO are present in organisms that use the multi-enzyme poly-cis phytoene desaturation pathway, including algae and cyanobacteria, but appear to be absent in green bacteria. Here we confirm the identity of Z-ISO in the model unicellular cyanobacterium Synechocystis sp. PCC 6803 by showing that the protein encoded by the slr1599 open reading frame has ζ-carotene isomerase activity when produced in Escherichia coli. A Synechocystis Δslr1599 mutant synthesizes a normal quota of carotenoids when grown under illumination, where the photolabile 15-15' cis double bond of 9,15,9'-tri-cis-ζ-carotene is isomerized by light, but accumulates this intermediate and fails to produce 'mature' carotenoid species during light-activated heterotrophic growth, demonstrating the requirement of Z-ISO for carotenoid biosynthesis during periods of darkness. In the absence of a structure of Z-ISO, we analyze AlphaFold models of the Synechocystis, Zea mays (maize), and Arabidopsis thaliana enzymes, identifying putative protein ligands for the heme B cofactor and the substrate-binding site.

8.
Methods Enzymol ; 674: 137-184, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36008006

RESUMO

Carotenoids are important photosynthetic pigments that play key roles in light harvesting and energy transfer, photoprotection, and in the folding, assembly, and stabilization of light-harvesting pigment-protein complexes. The genetically tractable purple phototrophic bacteria have been useful for investigating the biosynthesis and function of photosynthetic pigments and cofactors, including carotenoids. Here, we give an overview of the roles of carotenoids in photosynthesis and of their biosynthesis, focusing on the extensively studied purple bacterium Rhodobacter sphaeroides as a model organism. We provide detailed procedures for manipulating carotenoid biosynthesis, and for the preparation and analysis of the light-harvesting and photosynthetic reaction center complexes that bind them. Using appropriate examples from the literature, we discuss how such approaches have enhanced our understanding of the biosynthesis of carotenoids and the photosynthesis-related functions of these fascinating molecules.


Assuntos
Carotenoides , Rhodobacter sphaeroides , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carotenoides/metabolismo , Transferência de Energia , Complexos de Proteínas Captadores de Luz/metabolismo , Fotossíntese , Proteobactérias/genética , Proteobactérias/metabolismo , Rhodobacter sphaeroides/metabolismo
9.
Biochem J ; 479(13): 1487-1503, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35726684

RESUMO

In oxygenic photosynthesis, the cytochrome b6f (cytb6f) complex links the linear electron transfer (LET) reactions occurring at photosystems I and II and generates a transmembrane proton gradient via the Q-cycle. In addition to this central role in LET, cytb6f also participates in a range of processes including cyclic electron transfer (CET), state transitions and photosynthetic control. Many of the regulatory roles of cytb6f are facilitated by auxiliary proteins that differ depending upon the species, yet because of their weak and transient nature the structural details of these interactions remain unknown. An apparent key player in the regulatory balance between LET and CET in cyanobacteria is PetP, a ∼10 kDa protein that is also found in red algae but not in green algae and plants. Here, we used cryogenic electron microscopy to determine the structure of the Synechocystis sp. PCC 6803 cytb6f complex in the presence and absence of PetP. Our structures show that PetP interacts with the cytoplasmic side of cytb6f, displacing the C-terminus of the PetG subunit and shielding the C-terminus of cytochrome b6, which binds the heme cn cofactor that is suggested to mediate CET. The structures also highlight key differences in the mode of plastoquinone binding between cyanobacterial and plant cytb6f complexes, which we suggest may reflect the unique combination of photosynthetic and respiratory electron transfer in cyanobacterial thylakoid membranes. The structure of cytb6f from a model cyanobacterial species amenable to genetic engineering will enhance future site-directed mutagenesis studies of structure-function relationships in this crucial ET complex.


Assuntos
Complexo Citocromos b6f , Synechocystis , Microscopia Crioeletrônica , Complexo Citocromos b6f/química , Complexo Citocromos b6f/metabolismo , Complexo Citocromos b6f/fisiologia , Transporte de Elétrons/fisiologia , Fotossíntese , Synechocystis/metabolismo , Synechocystis/fisiologia , Tilacoides/genética , Tilacoides/metabolismo
10.
Biochim Biophys Acta Bioenerg ; 1863(2): 148508, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34793767

RESUMO

In the model purple phototrophic bacterium Rhodobacter (Rba.) sphaeroides, solar energy is converted via coupled electron and proton transfer reactions within the intracytoplasmic membranes (ICMs), infoldings of the cytoplasmic membrane that form spherical 'chromatophore' vesicles. These bacterial 'organelles' are ideal model systems for studying how the organisation of the photosynthetic complexes therein shape membrane architecture. In Rba. sphaeroides, light-harvesting 2 (LH2) complexes transfer absorbed excitation energy to dimeric reaction centre (RC)-LH1-PufX complexes. The PufX polypeptide creates a channel that allows the lipid soluble electron carrier quinol, produced by RC photochemistry, to diffuse to the cytochrome bc1 complex, where quinols are oxidised to quinones, with the liberated protons used to generate a transmembrane proton gradient and the electrons returned to the RC via cytochrome c2. Proximity between cytochrome bc1 and RC-LH1-PufX minimises quinone/quinol/cytochrome c2 diffusion distances within this protein-crowded membrane, however this distance has not yet been measured. Here, we tag the RC and cytochrome bc1 with yellow or cyan fluorescent proteins (YFP/CFP) and record the lifetimes of YFP/CFP Förster resonance energy transfer (FRET) pairs in whole cells. FRET analysis shows that that these complexes lie on average within 6 nm of each other. Complementary high-resolution atomic force microscopy (AFM) of intact, purified chromatophores verifies the close association of cytochrome bc1 complexes with RC-LH1-PufX dimers. Our results provide a structural basis for the close kinetic coupling between RC-LH1-PufX and cytochrome bc1 observed by spectroscopy, and explain how quinols/quinones and cytochrome c2 shuttle on a millisecond timescale between these complexes, sustaining efficient photosynthetic electron flow.


Assuntos
Rhodobacter sphaeroides
11.
Biochem J ; 478(21): 3923-3937, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34622934

RESUMO

The dimeric reaction centre light-harvesting 1 (RC-LH1) core complex of Rhodobacter sphaeroides converts absorbed light energy to a charge separation, and then it reduces a quinone electron and proton acceptor to a quinol. The angle between the two monomers imposes a bent configuration on the dimer complex, which exerts a major influence on the curvature of the membrane vesicles, known as chromatophores, where the light-driven photosynthetic reactions take place. To investigate the dimerisation interface between two RC-LH1 monomers, we determined the cryogenic electron microscopy structure of the dimeric complex at 2.9 Šresolution. The structure shows that each monomer consists of a central RC partly enclosed by a 14-subunit LH1 ring held in an open state by PufX and protein-Y polypeptides, thus enabling quinones to enter and leave the complex. Two monomers are brought together through N-terminal interactions between PufX polypeptides on the cytoplasmic side of the complex, augmented by two novel transmembrane polypeptides, designated protein-Z, that bind to the outer faces of the two central LH1 ß polypeptides. The precise fit at the dimer interface, enabled by PufX and protein-Z, by C-terminal interactions between opposing LH1 αß subunits, and by a series of interactions with a bound sulfoquinovosyl diacylglycerol lipid, bring together each monomer creating an S-shaped array of 28 bacteriochlorophylls. The seamless join between the two sets of LH1 bacteriochlorophylls provides a path for excitation energy absorbed by one half of the complex to migrate across the dimer interface to the other half.


Assuntos
Proteínas de Bactérias , Complexos de Proteínas Captadores de Luz , Rhodobacter sphaeroides/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Dimerização , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Estrutura Molecular
12.
Biochemistry ; 60(44): 3302-3314, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34699186

RESUMO

Light-harvesting 2 (LH2) antenna complexes augment the collection of solar energy in many phototrophic bacteria. Despite its frequent role as a model for such complexes, there has been no three-dimensional (3D) structure available for the LH2 from the purple phototroph Rhodobacter sphaeroides. We used cryo-electron microscopy (cryo-EM) to determine the 2.1 Å resolution structure of this LH2 antenna, which is a cylindrical assembly of nine αß heterodimer subunits, each of which binds three bacteriochlorophyll a (BChl) molecules and one carotenoid. The high resolution of this structure reveals all of the interpigment and pigment-protein interactions that promote the assembly and energy-transfer properties of this complex. Near the cytoplasmic face of the complex there is a ring of nine BChls, which absorb maximally at 800 nm and are designated as B800; each B800 is coordinated by the N-terminal carboxymethionine of LH2-α, part of a network of interactions with nearby residues on both LH2-α and LH2-ß and with the carotenoid. Nine carotenoids, which are spheroidene in the strain we analyzed, snake through the complex, traversing the membrane and interacting with a ring of 18 BChls situated toward the periplasmic side of the complex. Hydrogen bonds with C-terminal aromatic residues modify the absorption of these pigments, which are red-shifted to 850 nm. Overlaps between the macrocycles of the B850 BChls ensure rapid transfer of excitation energy around this ring of pigments, which act as the donors of energy to neighboring LH2 and reaction center light-harvesting 1 (RC-LH1) complexes.


Assuntos
Proteínas de Bactérias/ultraestrutura , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/ultraestrutura , Proteínas de Bactérias/metabolismo , Bacterioclorofila A/metabolismo , Carotenoides/química , Carotenoides/metabolismo , Microscopia Crioeletrônica/métodos , Transferência de Energia , Rhodobacter sphaeroides/metabolismo , Rhodobacter sphaeroides/ultraestrutura
13.
Biochem J ; 478(20): 3775-3790, 2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34590677

RESUMO

Reaction centre light-harvesting 1 (RC-LH1) complexes are the essential components of bacterial photosynthesis. The membrane-intrinsic LH1 complex absorbs light and the energy migrates to an enclosed RC where a succession of electron and proton transfers conserves the energy as a quinol, which is exported to the cytochrome bc1 complex. In some RC-LH1 variants quinols can diffuse through small pores in a fully circular, 16-subunit LH1 ring, while in others missing LH1 subunits create a gap for quinol export. We used cryogenic electron microscopy to obtain a 2.5 Šresolution structure of one such RC-LH1, a monomeric complex from Rhodobacter sphaeroides. The structure shows that the RC is partly enclosed by a 14-subunit LH1 ring in which each αß heterodimer binds two bacteriochlorophylls and, unusually for currently reported complexes, two carotenoids rather than one. Although the extra carotenoids confer an advantage in terms of photoprotection and light harvesting, they could impede passage of quinones through small, transient pores in the LH1 ring, necessitating a mechanism to create a dedicated quinone channel. The structure shows that two transmembrane proteins play a part in stabilising an open ring structure; one of these components, the PufX polypeptide, is augmented by a hitherto undescribed protein subunit we designate as protein-Y, which lies against the transmembrane regions of the thirteenth and fourteenth LH1α polypeptides. Protein-Y prevents LH1 subunits 11-14 adjacent to the RC QB site from bending inwards towards the RC and, with PufX preventing complete encirclement of the RC, this pair of polypeptides ensures unhindered quinone diffusion.


Assuntos
Proteínas de Bactérias/química , Complexos de Proteínas Captadores de Luz/química , Peptídeos/química , Fotossíntese/fisiologia , Complexo de Proteínas do Centro de Reação Fotossintética/química , Rhodobacter sphaeroides/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacterioclorofilas/química , Bacterioclorofilas/metabolismo , Sítios de Ligação , Carotenoides/química , Carotenoides/metabolismo , Microscopia Crioeletrônica , Expressão Gênica , Hidroquinonas/química , Hidroquinonas/metabolismo , Luz , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Modelos Moleculares , Peptídeos/genética , Peptídeos/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/metabolismo , Rhodobacter sphaeroides/efeitos da radiação
14.
Biochem J ; 478(17): 3253-3263, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34402504

RESUMO

The reaction centre light-harvesting 1 (RC-LH1) complex is the core functional component of bacterial photosynthesis. We determined the cryo-electron microscopy (cryo-EM) structure of the RC-LH1 complex from Rhodospirillum rubrum at 2.5 Šresolution, which reveals a unique monomeric bacteriochlorophyll with a phospholipid ligand in the gap between the RC and LH1 complexes. The LH1 complex comprises a circular array of 16 αß-polypeptide subunits that completely surrounds the RC, with a preferential binding site for a quinone, designated QP, on the inner face of the encircling LH1 complex. Quinols, initially generated at the RC QB site, are proposed to transiently occupy the QP site prior to traversing the LH1 barrier and diffusing to the cytochrome bc1 complex. Thus, the QP site, which is analogous to other such sites in recent cryo-EM structures of RC-LH1 complexes, likely reflects a general mechanism for exporting quinols from the RC-LH1 complex.


Assuntos
Proteínas de Bactérias/química , Microscopia Crioeletrônica/métodos , Complexos de Proteínas Captadores de Luz/química , Rhodospirillum rubrum/química , Proteínas de Bactérias/isolamento & purificação , Bacterioclorofilas/química , Benzoquinonas/química , Sítios de Ligação , Cristalização , Complexo III da Cadeia de Transporte de Elétrons/química , Ligação de Hidrogênio , Hidroquinonas/química , Ligantes , Complexos de Proteínas Captadores de Luz/isolamento & purificação , Fosfolipídeos/química , Conformação Proteica em alfa-Hélice
15.
Sci Adv ; 7(3)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33523887

RESUMO

The reaction-center light-harvesting complex 1 (RC-LH1) is the core photosynthetic component in purple phototrophic bacteria. We present two cryo-electron microscopy structures of RC-LH1 complexes from Rhodopseudomonas palustris A 2.65-Å resolution structure of the RC-LH114-W complex consists of an open 14-subunit LH1 ring surrounding the RC interrupted by protein-W, whereas the complex without protein-W at 2.80-Å resolution comprises an RC completely encircled by a closed, 16-subunit LH1 ring. Comparison of these structures provides insights into quinone dynamics within RC-LH1 complexes, including a previously unidentified conformational change upon quinone binding at the RC QB site, and the locations of accessory quinone binding sites that aid their delivery to the RC. The structurally unique protein-W prevents LH1 ring closure, creating a channel for accelerated quinone/quinol exchange.

16.
J Am Chem Soc ; 142(32): 13898-13907, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32672948

RESUMO

Advances in protein design and engineering have yielded peptide assemblies with enhanced and non-native functionalities. Here, various molecular organic semiconductors (OSCs), with known excitonic up- and down-conversion properties, are attached to a de novo-designed protein, conferring entirely novel functions on the peptide scaffolds. The protein-OSC complexes form similarly sized, stable, water-soluble nanoparticles that are robust to cryogenic freezing and processing into the solid-state. The peptide matrix enables the formation of protein-OSC-trehalose glasses that fix the proteins in their folded states under oxygen-limited conditions. The encapsulation dramatically enhances the stability of protein-OSC complexes to photodamage, increasing the lifetime of the chromophores from several hours to more than 10 weeks under constant illumination. Comparison of the photophysical properties of astaxanthin aggregates in mixed-solvent systems and proteins shows that the peptide environment does not alter the underlying electronic processes of the incorporated materials, exemplified here by singlet exciton fission followed by separation into weakly bound, localized triplets. This adaptable protein-based approach lays the foundation for spectroscopic assessment of a broad range of molecular OSCs in aqueous solutions and the solid-state, circumventing the laborious procedure of identifying the experimental conditions necessary for aggregate generation or film formation. The non-native protein functions also raise the prospect of future biocompatible devices where peptide assemblies could complex with native and non-native systems to generate novel functional materials.


Assuntos
Peptídeos/química , Proteínas/química , Temperatura , Estrutura Molecular , Estabilidade Proteica , Semicondutores , Análise Espectral , Xantofilas/química
17.
Proc Natl Acad Sci U S A ; 117(12): 6502-6508, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32139606

RESUMO

Carotenoids play a number of important roles in photosynthesis, primarily providing light-harvesting and photoprotective energy dissipation functions within pigment-protein complexes. The carbon-carbon double bond (C=C) conjugation length of carotenoids (N), generally between 9 and 15, determines the carotenoid-to-(bacterio)chlorophyll [(B)Chl] energy transfer efficiency. Here we purified and spectroscopically characterized light-harvesting complex 2 (LH2) from Rhodobacter sphaeroides containing the N = 7 carotenoid zeta (ζ)-carotene, not previously incorporated within a natural antenna complex. Transient absorption and time-resolved fluorescence show that, relative to the lifetime of the S1 state of ζ-carotene in solvent, the lifetime decreases ∼250-fold when ζ-carotene is incorporated within LH2, due to transfer of excitation energy to the B800 and B850 BChls a These measurements show that energy transfer proceeds with an efficiency of ∼100%, primarily via the S1 → Qx route because the S1 → S0 fluorescence emission of ζ-carotene overlaps almost perfectly with the Qx absorption band of the BChls. However, transient absorption measurements performed on microsecond timescales reveal that, unlike the native N ≥ 9 carotenoids normally utilized in light-harvesting complexes, ζ-carotene does not quench excited triplet states of BChl a, likely due to elevation of the ζ-carotene triplet energy state above that of BChl a These findings provide insights into the coevolution of photosynthetic pigments and pigment-protein complexes. We propose that the N ≥ 9 carotenoids found in light-harvesting antenna complexes represent a vital compromise that retains an acceptable level of energy transfer from carotenoids to (B)Chls while allowing acquisition of a new, essential function, namely, photoprotective quenching of harmful (B)Chl triplets.


Assuntos
Proteínas de Bactérias/metabolismo , Bacterioclorofilas/metabolismo , Carotenoides/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Proteínas de Bactérias/química , Carotenoides/química , Transferência de Energia , Cinética , Complexos de Proteínas Captadores de Luz/química , Fotossíntese , Rhodobacter sphaeroides/química , Rhodobacter sphaeroides/metabolismo
18.
Photosynth Res ; 144(2): 155-169, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31350671

RESUMO

Six variants of the LH2 antenna complex from Rba. sphaeroides, comprising the native B800-B850, B800-free LH2 (B850) and four LH2s with various (bacterio)chlorophylls reconstituted into the B800 site, have been investigated with static and time-resolved optical spectroscopies at room temperature and at 77 K. The study particularly focused on how reconstitution of a non-native (bacterio)chlorophylls affects excitation energy transfer between the naturally bound carotenoid spheroidene and artificially substituted pigments in the B800 site. Results demonstrate there is no apparent trend in the overall energy transfer rate from spheroidene to B850 bacteriochlorophyll a; however, a trend in energy transfer rate from the spheroidene S1 state to Qy of the B800 (bacterio)chlorophylls is noticeable. These outcomes were applied to test the validity of previously proposed energy values of the spheroidene S1 state, supporting a value in the vicinity of 13,400 cm-1 (746 nm).


Assuntos
Bacterioclorofilas/química , Carotenoides/química , Rhodobacter sphaeroides/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Bacterioclorofila A/química , Bacterioclorofila A/metabolismo , Bacterioclorofilas/metabolismo , Carotenoides/metabolismo , Transferência de Energia , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Rhodobacter sphaeroides/metabolismo , Espectrometria de Fluorescência
19.
Nature ; 575(7783): 535-539, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31723268

RESUMO

The cytochrome b6 f (cytb6 f ) complex has a central role in oxygenic photosynthesis, linking electron transfer between photosystems I and II and converting solar energy into a transmembrane proton gradient for ATP synthesis1-3. Electron transfer within cytb6 f occurs via the quinol (Q) cycle, which catalyses the oxidation of plastoquinol (PQH2) and the reduction of both plastocyanin (PC) and plastoquinone (PQ) at two separate sites via electron bifurcation2. In higher plants, cytb6 f also acts as a redox-sensing hub, pivotal to the regulation of light harvesting and cyclic electron transfer that protect against metabolic and environmental stresses3. Here we present a 3.6 Å resolution cryo-electron microscopy (cryo-EM) structure of the dimeric cytb6 f complex from spinach, which reveals the structural basis for operation of the Q cycle and its redox-sensing function. The complex contains up to three natively bound PQ molecules. The first, PQ1, is located in one cytb6 f monomer near the PQ oxidation site (Qp) adjacent to haem bp and chlorophyll a. Two conformations of the chlorophyll a phytyl tail were resolved, one that prevents access to the Qp site and another that permits it, supporting a gating function for the chlorophyll a involved in redox sensing. PQ2 straddles the intermonomer cavity, partially obstructing the PQ reduction site (Qn) on the PQ1 side and committing the electron transfer network to turnover at the occupied Qn site in the neighbouring monomer. A conformational switch involving the haem cn propionate promotes two-electron, two-proton reduction at the Qn site and avoids formation of the reactive intermediate semiquinone. The location of a tentatively assigned third PQ molecule is consistent with a transition between the Qp and Qn sites in opposite monomers during the Q cycle. The spinach cytb6 f structure therefore provides new insights into how the complex fulfils its catalytic and regulatory roles in photosynthesis.


Assuntos
Microscopia Crioeletrônica , Complexo Citocromos b6f/química , Complexo Citocromos b6f/ultraestrutura , Spinacia oleracea/química , Spinacia oleracea/ultraestrutura , Sítios de Ligação , Clorofila/química , Heme/química , Lipídeos/química , Modelos Moleculares , Oxirredução , Fotossíntese , Plastoquinona/química , Relação Estrutura-Atividade
20.
Cell ; 179(5): 1098-1111.e23, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31730852

RESUMO

We report a 100-million atom-scale model of an entire cell organelle, a photosynthetic chromatophore vesicle from a purple bacterium, that reveals the cascade of energy conversion steps culminating in the generation of ATP from sunlight. Molecular dynamics simulations of this vesicle elucidate how the integral membrane complexes influence local curvature to tune photoexcitation of pigments. Brownian dynamics of small molecules within the chromatophore probe the mechanisms of directional charge transport under various pH and salinity conditions. Reproducing phenotypic properties from atomistic details, a kinetic model evinces that low-light adaptations of the bacterium emerge as a spontaneous outcome of optimizing the balance between the chromatophore's structural integrity and robust energy conversion. Parallels are drawn with the more universal mitochondrial bioenergetic machinery, from whence molecular-scale insights into the mechanism of cellular aging are inferred. Together, our integrative method and spectroscopic experiments pave the way to first-principles modeling of whole living cells.


Assuntos
Células/metabolismo , Metabolismo Energético , Adaptação Fisiológica/efeitos da radiação , Trifosfato de Adenosina/metabolismo , Benzoquinonas/metabolismo , Membrana Celular/metabolismo , Membrana Celular/efeitos da radiação , Células/efeitos da radiação , Cromatóforos/metabolismo , Citocromos c2/metabolismo , Difusão , Transporte de Elétrons/efeitos da radiação , Metabolismo Energético/efeitos da radiação , Meio Ambiente , Ligação de Hidrogênio , Cinética , Luz , Simulação de Dinâmica Molecular , Fenótipo , Proteínas/metabolismo , Rhodobacter sphaeroides/fisiologia , Rhodobacter sphaeroides/efeitos da radiação , Eletricidade Estática , Estresse Fisiológico/efeitos da radiação , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...