Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38473229

RESUMO

The eukaryotic genome is mainly transcribed into non-coding RNAs (ncRNAs), including different RNA biotypes, such as micro RNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), among others. Although miRNAs are assumed to act primarily in the cytosol, mature miRNAs have been reported and functionally characterized in the nuclei of different cells. Further, lncRNAs are important regulators of different biological processes in the cell nucleus as part of different ribonucleoprotein complexes. CircRNAs constitute a relatively less-characterized RNA biotype that has a circular structure as result of a back-splicing process. However, circRNAs have recently attracted attention in different scientific fields due to their involvement in various biological processes and pathologies. In this review, we will summarize recent studies that link to cancer miRNAs that have been functionally characterized in the cell nucleus, as well as lncRNAs and circRNAs that are bound by core components of the polycomb repressive complex 2 (PRC2) or the protein fused in sarcoma (FUS), highlighting mechanistic aspects and their diagnostic and therapeutic potential.

2.
Theranostics ; 13(8): 2384-2407, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215577

RESUMO

Background: Small cell lung cancer (SCLC) is an extremely aggressive cancer type with a patient median survival of 6-12 months. Epidermal growth factor (EGF) signaling plays an important role in triggering SCLC. In addition, growth factor-dependent signals and alpha-, beta-integrin (ITGA, ITGB) heterodimer receptors functionally cooperate and integrate their signaling pathways. However, the precise role of integrins in EGF receptor (EGFR) activation in SCLC remains elusive. Methods: We analyzed human precision-cut lung slices (hPCLS), retrospectively collected human lung tissue samples and cell lines by classical methods of molecular biology and biochemistry. In addition, we performed RNA-sequencing-based transcriptomic analysis in human lung cancer cells and human lung tissue samples, as well as high-resolution mass spectrometric analysis of the protein cargo from extracellular vesicles (EVs) that were isolated from human lung cancer cells. Results: Our results demonstrate that non-canonical ITGB2 signaling activates EGFR and RAS/MAPK/ERK signaling in SCLC. Further, we identified a novel SCLC gene expression signature consisting of 93 transcripts that were induced by ITGB2, which may be used for stratification of SCLC patients and prognosis prediction of LC patients. We also found a cell-cell communication mechanism based on EVs containing ITGB2, which were secreted by SCLC cells and induced in control human lung tissue RAS/MAPK/ERK signaling and SCLC markers. Conclusions: We uncovered a mechanism of ITGB2-mediated EGFR activation in SCLC that explains EGFR-inhibitor resistance independently of EGFR mutations, suggesting the development of therapies targeting ITGB2 for patients with this extremely aggressive lung cancer type.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma de Pequenas Células do Pulmão/genética , Estudos Retrospectivos , Receptores ErbB/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Integrinas/genética , Mutação
3.
Nanomedicine ; 40: 102504, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34890821

RESUMO

This study reports the development and pre-clinical evaluation of biodrug using RNA interference and nanotechnology. The major challenges in achieving targeted gene silencing in vivo include the stability of RNA molecules, accumulation into pharmacological levels, and site-specific targeting of the tumor. We report the use of Inulin for coating the arginine stabilized manganese oxide nanocuboids (MNCs) for oral delivery of shRNA to the gut. Furthermore, bio-distribution analysis exhibited site-specific targeting in the intestines, improved pharmacokinetic properties, and faster elimination from the system without cytotoxicity. To evaluate the therapeutic possibility and effectiveness of this multimodal bio-drug, it was orally delivered to Apc knockout colon cancer mice models. Persistent and efficient delivery of bio-drug was demonstrated by the knockdown of target genes and increased median survival in the treated cohorts. This promising utility of RNAi-Nanotechnology approach advocates the use of bio-drug in an effort to replace chemo-drugs as the future of cancer therapeutics.


Assuntos
Neoplasias do Colo , Inulina , Animais , Carcinogênese , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Camundongos , Camundongos Knockout , Interferência de RNA , RNA Interferente Pequeno/uso terapêutico
4.
Nanoscale ; 14(2): 492-505, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34913453

RESUMO

Cancer is a debilitating disease and one of the leading causes of death in the world. In spite of the current clinical management being dependent on applying robust pathological variables and well-defined therapeutic strategies, there is an imminent need for novel and targeted therapies with least side effects. RNA interference (RNAi) has gained attention due to its precise potential for targeting multiple genes involved in cancer progression. Nanoparticles with their enhanced permeability and retention (EPR) effect have been found to overcome the limitations of RNAi-based therapies. With their high transportation capacity, nanocarriers can target RNAi molecules to tumor tissues and protect them from enzymatic degradation. Accumulating evidence has shown that tyrosine kinase Ephb4 is overexpressed in various cancers. Therefore, we report here the development and pre-clinical validation of curcumin-chitosan-loaded: eudragit-coated nanocomposites conjugated with Ephb4 shRNA as a feasible bio-drug to suppress breast and colon cancers. The proposed bio-drug is non-toxic and bio-compatible with a higher uptake efficiency and through our experimental results we have demonstrated the effective site-specific delivery of this biodrug and the successfull silencing of their respective target genes in vivo in autochthonous knockout models of breast and colon cancer. While mammary tumors showed a considerable decrease in size, oral administration of the biodrug conjugate to Apc knockout colon models prolonged the animal survival period by six months. Hence, this study has provided empirical proof that the combinatorial approach involving RNA interference and nanotechnology is a promising alliance for next-generation cancer therapeutics.


Assuntos
Quitosana , Neoplasias do Colo , Curcumina , Nanopartículas , Animais , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Curcumina/farmacologia , Interferência de RNA
5.
Database (Oxford) ; 20202020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32128558

RESUMO

Acute lymphoblastic leukemia (ALL) is one of the most common hematological malignancies in children. Recent studies suggest the involvement of multiple microRNAs in the tumorigenesis of various leukemias. However, until now, no comprehensive database exists for miRNAs and their cognate target genes involved specifically in ALL. Therefore, we developed 'LeukmiR' a dynamic database comprising in silico predicted microRNAs, and experimentally validated miRNAs along with the target genes they regulate in mouse and human. LeukmiR is a user-friendly platform with search strings for ALL-associated microRNAs, their sequences, description of target genes, their location on the chromosomes and the corresponding deregulated signaling pathways. For the user query, different search modules exist where either quick search can be carried out using any fuzzy term or by providing exact terms in specific modules. All entries for both human and mouse genomes can be retrieved through multiple options such as miRNA ID, their accession number, sequence, target genes, Ensemble-ID or Entrez-ID. User can also access miRNA: mRNA interaction networks in different signaling pathways, the genomic location of the targeted regions such as 3'UTR, 5'UTR and exons with their gene ontology and disease ontology information in both human and mouse systems. Herein, we also report 51 novel microRNAs which are not described earlier for ALL. Thus, LeukmiR database will be a valuable source of information for researchers to understand and investigate miRNAs and their targets with diagnostic and therapeutic potential in ALL. Database URL: http://tdb.ccmb.res.in/LeukmiR/.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Regulação Leucêmica da Expressão Gênica , MicroRNAs/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Regiões 5' não Traduzidas/genética , Animais , Mineração de Dados/métodos , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Redes Reguladoras de Genes , Humanos , Internet , Camundongos , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...