Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(23): 23455-23465, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38044592

RESUMO

Nanoscale strain control of exciton funneling is an increasingly critical tool for the scalable production of single photon emitters (SPEs) in two-dimensional materials. However, conventional far-field optical microscopies remain constrained in spatial resolution by the diffraction limit and thus can provide only a limited description of nanoscale strain localization of SPEs. Here, we quantify the effects of nanoscale heterogeneous strain on the energy and brightness of GaSe SPEs on nanopillars with correlative cathodoluminescence, photoluminescence, and atomic force microscopy, supported by density functional theory simulations. We report the strain-localized SPEs have a broad range of emission wavelengths from 620 to 900 nm. We reveal substantial strain-controlled SPE wavelength tunability over a ∼100 nm spectral range and 2 orders of magnitude enhancement in the SPE brightness at the pillar center due to Type-I exciton funneling. In addition, we show that radiative biexciton cascade processes contribute to observed CL photon superbunching. Also, the GaSe SPEs show excellent stability, where their properties remain unchanged after electron beam exposure. We anticipate that this comprehensive study on the nanoscale strain control of two-dimensional SPEs will provide key insights to guide the development of truly deterministic quantum photonics.

2.
Nano Lett ; 23(21): 9740-9747, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37879097

RESUMO

Exciton localization through nanoscale strain has been used to create highly efficient single-photon emitters (SPEs) in 2D materials. However, the strong Coulomb interactions between excitons can lead to nonradiative recombination through exciton-exciton annihilation, negatively impacting SPE performance. Here, we investigate the effect of Coulomb interactions on the brightness, single photon purity, and operating temperatures of strain-localized GaSe SPEs by using electrostatic doping. By gating GaSe to the charge neutrality point, the exciton-exciton annihilation nonradiative pathway is suppressed, leading to ∼60% improvement of emission intensity and an enhancement of the single photon purity g(2)(0) from 0.55 to 0.28. The operating temperature also increased from 4.5 K to 85 K consequently. This research provides insight into many-body interactions in excitons confined by nanoscale strain and lays the groundwork for the optimization of SPEs for optoelectronics and quantum photonics.

3.
Analyst ; 147(9): 1824-1832, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35380148

RESUMO

The impact of the environment on the properties of graphene such as strain, charge density, and dielectric environment can be evaluated by Raman spectroscopy. These environmental interactions are not trivial to determine since they affect the spectra in overlapping ways. Data pre-processing such as background subtraction and peak fitting is typically used. Moreover, collected spectroscopic data vary due to different experimental setups and environments. Such variations, artifacts, and environmental differences pose a challenge for accurate spectral analysis. In this work, we developed a deep learning model to overcome the effects of such variations and classify graphene Raman spectra according to different charge densities and dielectric environments. We consider two approaches: deep learning models and machine learning algorithms to classify spectra with slightly different charge densities or dielectric environments. These two approaches show similar success rates for high signal-to-noise data. However, deep learning models are less sensitive to noise. To improve the accuracy and generalization of all models, we use data augmentation through additive noise and peak shifting. We demonstrated the spectral classification with 99% accuracy using a convolutional neural net (CNN) model. The CNN model can classify Raman spectra of graphene with different charge doping levels and even subtle variations in the spectra of graphene on SiO2 and graphene on silanized SiO2. Our approach has the potential for fast and reliable estimation of graphene doping levels and dielectric environments. The proposed model paves the way for achieving efficient analytical tools to evaluate the properties of graphene.


Assuntos
Aprendizado Profundo , Grafite , Aprendizado de Máquina , Dióxido de Silício , Análise Espectral Raman/métodos
4.
Rev Sci Instrum ; 92(10): 104706, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34717443

RESUMO

Recent breakthroughs in material development have increased the demand for characterization methods capable of probing nanoscale features on ultrafast time scales. As the sample reduces to atomically thin levels, an extremely low-level signal limits the feasibility of many experiments. Here, we present an affordable and easy-to-implement solution to expand the maximum sensitivity of lock-in detection systems used in transient absorption spectroscopy by multiple orders of magnitude. By implementation of a tuned RC circuit to the output of an avalanche photodiode, electric pulse shaping allows for vastly improved lock-in detection. Furthermore, a carefully designed "peak detector" circuit provides additional pulse shaping benefits, resulting in even more lock-in detection signal enhancement. We demonstrate the improvement of lock-in detection with each of these schemes by performing benchmark measurements of a white-light continuum signal and micro-transient absorption spectroscopy on a few-layer transition metal dichalcogenide sample. Our results show the practicality of ultrafast pump-probe spectroscopy for many high-sensitivity experimental schemes.

6.
Sci Rep ; 7(1): 14062, 2017 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-29070869

RESUMO

Monolayer molybdenum disulfide (MoS2) has emerged as a model system for studying many-body physics because the low dimensionality reduces screening leading to tightly bound states stable at room temperature. Further, the many-body states possess a pseudo-spin degree of freedom that corresponds with the two direct-gap valleys of the band structure, which can be optically manipulated. Here we focus on one bound state, the negatively charged trion. Unlike excitons, trions can radiatively decay with non-zero momentum by kicking out an electron, resulting in an asymmetric trion photoluminescence (PL) peak with a long low-energy tail and peak position that differs from the zero momentum trion energy. The asymmetry of the trion PL peak and resulting peak red-shift depends both on the trion size and a temperature-dependent contribution. Ignoring the trion asymmetry will result in over estimating the trion binding energy by nearly 20 meV at room temperature. We analyze the temperature-dependent PL to reveal the effective trion size, consistent with the literature, and the temperature dependence of the band gap and spin-orbit splitting of the valence band. This is the first time the temperature-dependence of the trion PL has been analyzed with such detail in any system.


Assuntos
Dissulfetos/química , Elétrons , Luminescência , Molibdênio/química , Óptica e Fotônica , Teoria Quântica , Temperatura
7.
Sci Rep ; 7(1): 13539, 2017 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-29051553

RESUMO

Pristine graphene encapsulated in hexagonal boron nitride has transport properties rivalling suspended graphene, while being protected from contamination and mechanical damage. For high quality devices, it is important to avoid and monitor accidental doping and charge fluctuations. The 2D Raman double peak in intrinsic graphene can be used to optically determine charge density, with decreasing peak split corresponding to increasing charge density. We find strong correlations between the 2D 1 and 2D 2 split vs 2D line widths, intensities, and peak positions. Charge density fluctuations can be measured with orders of magnitude higher precision than previously accomplished using the G-band shift with charge. The two 2D intrinsic peaks can be associated with the "inner" and "outer" Raman scattering processes, with the counterintuitive assignment of the phonon closer to the K point in the KM direction (outer process) as the higher energy peak. Even low charge screening lifts the phonon Kohn anomaly near the K point for graphene encapsulated in hBN, and shifts the dominant intensity from the lower to the higher energy peak.

8.
Nano Lett ; 16(9): 5836-41, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27509768

RESUMO

We demonstrate the continuous and reversible tuning of the optical band gap of suspended monolayer MoS2 membranes by as much as 500 meV by applying very large biaxial strains. By using chemical vapor deposition (CVD) to grow crystals that are highly impermeable to gas, we are able to apply a pressure difference across suspended membranes to induce biaxial strains. We observe the effect of strain on the energy and intensity of the peaks in the photoluminescence (PL) spectrum and find a linear tuning rate of the optical band gap of 99 meV/%. This method is then used to study the PL spectra of bilayer and trilayer devices under strain and to find the shift rates and Grüneisen parameters of two Raman modes in monolayer MoS2. Finally, we use this result to show that we can apply biaxial strains as large as 5.6% across micron-sized areas and report evidence for the strain tuning of higher level optical transitions.

9.
Nano Lett ; 15(9): 5969-75, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26218679

RESUMO

Graphene is a promising material for strain engineering based on its excellent flexibility and elastic properties, coupled with very high electrical mobility. In order to implement strain devices, it is important to understand and control the clamping of graphene to its support. Here, we investigate the limits of the strong van der Waals interaction on friction clamping. We find that the friction of graphene on a SiO2 substrate can support a maximum local strain gradient and that higher strain gradients result in sliding and strain redistribution. Furthermore, the friction decreases with increasing strain. The system used is graphene placed over a nanoscale SiO2 grating, causing strain and local strain variations. We use a combination of atomic force microscopy and Raman scattering to determine the friction coefficient, after accounting for compression and accidental charge doping, and model the local strain variation within the laser spot size. By using uniaxial strain aligned to a high crystal symmetry direction, we also determine the 2D Raman Grüneisen parameter and deformation potential in the zigzag direction.

10.
Nano Lett ; 14(11): 6539-46, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25310514

RESUMO

Cycloparaphenylenes, the simplest structural unit of armchair carbon nanotubes, have unique optoelectronic properties counterintuitive in the class of conjugated organic materials. Our time-dependent density functional theory study and excited state dynamics simulations of cycloparaphenylene chromophores provide a simple and conceptually appealing physical picture explaining experimentally observed trends in optical properties in this family of molecules. Fully delocalized degenerate second and third excitonic states define linear absorption spectra. Self-trapping of the lowest excitonic state due to electron-phonon coupling leads to the formation of spatially localized excitation in large cycloparaphenylenes within 100 fs. This invalidates the commonly used Condon approximation and breaks optical selection rules, making these materials superior fluorophores. This process does not occur in the small molecules, which remain inefficient emitters. A complex interplay of symmetry, π-conjugation, conformational distortion and bending strain controls all photophysics of cycloparaphenylenes.

11.
Phys Rev Lett ; 112(5): 056803, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24580621

RESUMO

Far from resonance, the coupling of the G-band phonon to magnetoexcitons in single layer graphene displays kinks and splittings versus filling factor that are well described by Pauli blocking and unblocking of inter- and intra-Landau level transitions. We explore the nonresonant electron-phonon coupling by high-magnetic field Raman scattering while electrostatic tuning of the carrier density controls the filling factor. We show qualitative and quantitative agreement between spectra and a linearized model of electron-phonon interactions in magnetic fields. The splitting is caused by dichroism of left- and right-handed circular polarized light due to lifting of the G-band phonon degeneracy, and the piecewise linear slopes are caused by the linear occupancy of sequential Landau levels versus ν.

12.
Nano Lett ; 13(6): 2605-10, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23627605

RESUMO

Strain, bending rigidity, and adhesion are interwoven in determining how graphene responds when pulled across a substrate. Using Raman spectroscopy of circular, graphene-sealed microchambers under variable external pressure, we demonstrate that graphene is not firmly anchored to the substrate when pulled. Instead, as the suspended graphene is pushed into the chamber under pressure, the supported graphene outside the microchamber is stretched and slides, pulling in an annulus. Analyzing Raman G band line scans with a continuum model extended to include sliding, we extract the pressure dependent sliding friction between the SiO2 substrate and mono-, bi-, and trilayer graphene. The sliding friction for trilayer graphene is directly proportional to the applied load, but the friction for monolayer and bilayer graphene is inversely proportional to the strain in the graphene, which is in violation of Amontons' law. We attribute this behavior to the high surface conformation enabled by the low bending rigidity and strong adhesion of few layer graphene.

13.
Phys Rev Lett ; 108(11): 117404, 2012 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-22540509

RESUMO

We exploit an energy level crossover effect [Haroz et al., Phys. Rev. B 77, 125405 (2008)] to probe quantum interference in the resonance Raman response from carbon nanotube samples highly enriched in the single semiconducting chiralities of (8,6), (9,4), and (10,5). UV Raman excitation profiles of G-band spectra reveal unambiguous signatures of interference between the third and fourth excitonic states (E(33) and E(44)). Both constructive and destructive responses are observed and lead to anomalous intensity ratios in the LO and TO modes. Especially large anomalies for the (10,5) structure result from nearly identical energies found for the two E(ii) transitions. The interference patterns demonstrate that the sign of the exciton-phonon coupling matrix elements changes for the LO mode between the two electronic states, and remains the same for the TO mode. Significant non-Condon contributions to the Raman response are also found.

14.
ACS Nano ; 5(12): 9898-906, 2011 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-22077149

RESUMO

The exciton dynamics for an ensemble of individual, suspended (6,5), single-walled carbon nanotubes revealed by single color E(22) resonant pump-probe spectroscopy for a wide range of pump fluences are reported. The optically excited initial exciton population ranges from approximately 5 to 120 excitons per ∼725 nm nanotube. At the higher fluences of this range, the pump-probe signals are no longer linearly dependent on the pump intensity. A single, predictive model is described that fits all data for two decades of pump fluences and three decades of delay times. The model introduces population loss from the optically active zero momentum E(22) state to the rest of the E(22) subband, which is dark due to momentum selection rules. In the single exciton limit, the E(11) dynamics are well described by a stretched exponential, which is a direct consequence of diffusion quenching from an ensemble of nanotubes of different lengths. The observed change in population relaxation dynamics as a function of increasing pump intensity is attributed to exciton-exciton Auger de-excitation in the E(11) subband and, to a lesser extent, in the E(22) subband. From the fit to the model, an average defect density 1/ρ = 150 nm and diffusion constants D(11) = 4 cm(2)/s and D(22) = 0.2 cm(2)/s are determined.


Assuntos
Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Transferência de Energia , Dinâmica não Linear , Tamanho da Partícula , Água/química
15.
ACS Nano ; 5(9): 6916-24, 2011 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-21894965

RESUMO

Reproducible dry and wet transfer techniques were developed to improve the transfer of large-area monolayer graphene grown on copper foils by chemical vapor deposition (CVD). The techniques reported here allow transfer onto three different classes of substrates: substrates covered with shallow depressions, perforated substrates, and flat substrates. A novel dry transfer technique was used to make graphene-sealed microchambers without trapping liquid inside. The dry transfer technique utilizes a polydimethylsiloxane frame that attaches to the poly(methyl methacrylate) spun over the graphene film, and the monolayer graphene was transferred onto shallow depressions with 300 nm depth. The improved wet transfer onto perforated substrates with 2.7 µm diameter holes yields 98% coverage of holes covered with continuous films, allowing the ready use of Raman spectroscopy and transmission electron microscopy to study the intrinsic properties of CVD-grown monolayer graphene. Additionally, monolayer graphene transferred onto flat substrates has fewer cracks and tears, as well as lower sheet resistance than previous transfer techniques. Monolayer graphene films transferred onto glass had a sheet resistance of ∼980 Ω/sq and a transmittance of 97.6%. These transfer techniques open up possibilities for the fabrication of various graphene devices with unique configurations and enhanced performance.

16.
ACS Nano ; 5(6): 5233-41, 2011 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-21612303

RESUMO

The Condon approximation is widely applied in molecular and condensed matter spectroscopy and states that electronic transition dipoles are independent of nuclear positions. This approximation is related to the Franck-Condon principle, which in its simplest form holds that electronic transitions are instantaneous on the time scale of nuclear motion. The Condon approximation leads to a long-held assumption in Raman spectroscopy of carbon nanotubes: intensities arising from resonance with incident and scattered photons are equal. Direct testing of this assumption has not been possible due to the lack of homogeneous populations of specific carbon nanotube chiralities. Here, we present the first complete Raman excitation profiles (REPs) for the nanotube G band for 10 pure semiconducting chiralities. In contrast to expectations, a strong asymmetry is observed in the REPs for all chiralities, with the scattered resonance always appearing weaker than the incident resonance. The observed behavior results from violation of the Condon approximation and originates in changes in the electronic transition dipole due to nuclear motion (non-Condon effect), as confirmed by our quantum chemical calculations. The agreement of our calculations with the experimental REP asymmetries and observed trends in family dependence indicates the behavior is intrinsic.

17.
ACS Nano ; 5(1): 647-55, 2011 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-21166468

RESUMO

We perform Monte Carlo simulations of the time-resolved, spatially resolved, and integrated photoluminescence from a nanotube to investigate the role of the nanotube length L and defects using an exciton random-walk and defect-induced quenching model. When nonradiative decay is due solely to diffusion quenching, the quantum efficiency is approximately proportional to L2 at low quantum efficiency. With defects present, the quantum efficiency depends only weakly on the number defects but is instead tied to Leff2 where Leff is the root-mean-square separation between defects. The time-resolved photoluminescence decay of nanotubes is multiexponential for both pristine nanotubes and nanotubes with defects. The dominant time scale for a pristine nanotube is proportional to L2/D, where D is the diffusion constant. The presence of defects on the nanotube introduces additional time scales.

18.
Nano Lett ; 10(1): 6-10, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19928908

RESUMO

Measurements on graphene exfoliated over a substrate prepatterned with shallow depressions demonstrate that graphene does not remain free-standing but instead adheres to the substrate despite the induced biaxial strain. The strain is homogeneous over the depression bottom as determined by Raman measurements. We find higher Raman shifts and Gruneisen parameters of the phonons underlying the G and 2D bands under biaxial strain than previously reported. Interference modeling is used to determine the vertical position of the graphene and to calculate the optimum dielectric substrate stack for maximum Raman signal.

19.
J Opt Soc Am A Opt Image Sci Vis ; 26(6): 1458-66, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19488185

RESUMO

Dipole radiation in and near planar stratified dielectric media is studied theoretically within the context of fluorescence microscopy, as fluorescent emitters are generally modeled by electric dipoles. Although the main emphasis of this study is placed on the closed-form representations of the field components of fluorescent emitters in layered environments in near- and far-field regions, the underlying motive is to understand the limits of spectral self-interference fluorescence microscopy in studying the dipole orientation of fluorophores. Since accurate calculations of the field components of arbitrarily polarized electric dipoles in layered environments are computationally very time-consuming, a method for finding their closed-form representations is proposed using the closed-form potential Green's functions previously developed for microwave applications. The method is verified on typical geometries used in spectral self-interference microscopy experiments, where a dipole emitter is positioned over a slab of SiO(2) on top of a Si substrate. In addition to facilitating efficient calculation of near and intermediate fields of fluorescent emitters, closed-form Green's functions for fields would also play a crucial role in developing efficient and rigorous computational analysis and design tools for optical passive devices such as optical antennas by significantly improving the computational cost of the numerical solution of the integral equation.


Assuntos
Algoritmos , Campos Eletromagnéticos , Microscopia de Fluorescência/métodos , Dióxido de Silício/química
20.
Nano Lett ; 8(12): 4330-4, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19367930

RESUMO

The spectral position of light emission from an individual carbon nanotube is shown to depend on the location of the nanotube within the focal spot, while no such effect is present for macroscopic emitters. In addition, in contrast to macroscopic emitters, the measured line width from the nanotube emitter is independent of spectrometer entrance slit width. The effects are general for any nanoscale optical emitter with at least one dimension smaller than the optical diffraction limit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...