Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Robot Res ; 2(1)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28480335

RESUMO

Lung cancer is the most deadly form of cancer in part because of the challenges associated with accessing nodules for diagnosis and therapy. Transoral access is preferred to percutaneous access since it has a lower risk of lung collapse, yet many sites are currently unreachable transorally due to limitations with current bronchoscopic instruments. Toward this end, we present a new robotic system for image-guided trans-bronchoscopic lung access. The system uses a bronchoscope to navigate in the airway and bronchial tubes to a site near the desired target, a concentric tube robot to move through the bronchial wall and aim at the target, and a bevel-tip steerable needle with magnetic tracking to maneuver through lung tissue to the target under closed-loop control. In this work, we illustrate the workflow of our system and show accurate targeting in phantom experiments. Ex vivo porcine lung experiments show that our steerable needle can be tuned to achieve appreciable curvature in lung tissue. Lastly, we present targeting results with our system using two scenarios based on patient cases. In these experiments, phantoms were created from patient-specific computed tomography information and our system was used to target the locations of suspicious nodules, illustrating the ability of our system to reach sites that are traditionally inaccessible transorally.

2.
J Med Device ; 11(1): 0145011-145019, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28070228

RESUMO

This paper presents a miniature wrist that can be integrated into needle-sized surgical instruments. The wrist consists of a nitinol tube with asymmetric cutouts that is actuated by a single tendon to provide high distal curvature. We derive and experimentally validate kinematic and static models for the wrist and describe several prototype wrists, illustrating the straightforward fabrication and scalability of the design. We experimentally investigate fatigue life, the concept of tip-first bending, and practical use of the wrist with a concentric tube robot in an endonasal surgical scenario.

3.
IEEE Int Conf Robot Autom ; 2015: 1776-1781, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26405562

RESUMO

The needle-sized surgical tools used in arthroscopy, otolaryngology, and other surgical fields could become even more valuable to surgeons if endowed with the ability to navigate around sharp corners to manipulate or visualize tissue. We present a needle-sized wrist design that grants this ability. It can be easily interfaced with manual tools or concentric tube robots and is straightforward and inexpensive to manufacture. The wrist consists of a nitinol tube with several asymmetric cutouts, actuated by a tendon. Perhaps counter-intuitively, within this seemingly simple design concept, design optimization is challenging due to the number of parameters available and nonlinearities in material properties. In this paper, we examine a subset of possible geometries and derive kinematic and static models. Experimental results with a 1.16 mm diameter prototype validate the models. Lastly, we provide a discussion summarizing the lessons learned in our early experience designing and fabricating wrists of this type.

4.
IEEE Int Conf Robot Autom ; 2015: 2361-2367, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26413381

RESUMO

Concentric tube robots are thin, tentacle-like devices that can move along curved paths and can potentially enable new, less invasive surgical procedures. Safe and effective operation of this type of robot requires that the robot's shaft avoid sensitive anatomical structures (e.g., critical vessels and organs) while the surgeon teleoperates the robot's tip. However, the robot's unintuitive kinematics makes it difficult for a human user to manually ensure obstacle avoidance along the entire tentacle-like shape of the robot's shaft. We present a motion planning approach for concentric tube robot teleoperation that enables the robot to interactively maneuver its tip to points selected by a user while automatically avoiding obstacles along its shaft. We achieve automatic collision avoidance by precomputing a roadmap of collision-free robot configurations based on a description of the anatomical obstacles, which are attainable via volumetric medical imaging. We also mitigate the effects of kinematic modeling error in reaching the goal positions by adjusting motions based on robot tip position sensing. We evaluate our motion planner on a teleoperated concentric tube robot and demonstrate its obstacle avoidance and accuracy in environments with tubular obstacles.

5.
IEEE Int Conf Robot Autom ; 2015: 5378-5383, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26157600

RESUMO

Lung cancer is the most deadly form of cancer, and survival depends on early-stage diagnosis and treatment. Transoral access is preferable to traditional between-the-ribs needle insertion because it is less invasive and reduces risk of lung collapse. Yet many sites in the peripheral zones of the lung or distant from the bronchi cannot currently be accessed transorally, due to the relatively large diameter and lack of sufficient steerablity of current instrumentation. To remedy this, we propose a new robotic system that uses a tendon-actuated device (bronchoscope) as a first stage for deploying a concentric tube robot, which itself is a vehicle through which a bevel steered needle can be introduced into the soft tissue of the lung outside the bronchi. In this paper we present the various components of the system and the workflow we envision for deploying the robot to a target using image guidance. We describe initial validation experiments in which we puncture ex vivo bronchial wall tissue and also target a nodule in a phantom with an average final tip error of 0.72 mm.

6.
Neurosurgery ; 76(4): 479-84; discussion 484, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25599203

RESUMO

BACKGROUND: Novel robots have recently been developed specifically for endonasal surgery. They can deliver several thin, tentacle-like surgical instruments through a single nostril. Among the many potential advantages of such a robotic system is the prospect of telesurgery over long distances. OBJECTIVE: To describe a phantom pituitary tumor removal done by a surgeon in Nashville, Tennessee, controlling a robot located approximately 800 km away in Chapel Hill, North Carolina, the first remote telesurgery experiment involving tentacle-like concentric tube manipulators. METHODS: A phantom pituitary tumor removal experiment was conducted twice, once locally and once remotely, with the robotic system. Robot commands and video were transmitted across the Internet. The latency of the system was evaluated quantitatively in both local and remote cases to determine the effect of the 800-km distance between the surgeon and robot. RESULTS: We measured a control and video latency of < 100 milliseconds in the remote case. Qualitatively, the surgeon was able to carry out the experiment easily and observed no discernable difference between the remote and local cases. CONCLUSION: Telesurgery over long distances is feasible with this robotic system. In the longer term, this may enable expert skull base surgeons to help many more patients by performing surgeries remotely over long distances.


Assuntos
Neuroendoscopia/instrumentação , Neuroendoscopia/métodos , Robótica/instrumentação , Robótica/métodos , Telemedicina/instrumentação , Telemedicina/métodos , Idoso , Estudos de Viabilidade , Feminino , Humanos , Masculino , Nariz , Imagens de Fantasmas , Neoplasias Hipofisárias/cirurgia , Base do Crânio/cirurgia
7.
J Neurol Surg B Skull Base ; 76(2): 145-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27054057

RESUMO

Objectives The purpose of this study is to experimentally evaluate the use of concentric tube continuum robots in endonasal skull base tumor removal. This new type of surgical robot offers many advantages over existing straight and rigid surgical tools including added dexterity, the ability to scale movements, and the ability to rotate the end effector while leaving the robot fixed in space. In this study, a concentric tube continuum robot was used to remove simulated pituitary tumors from a skull phantom. Design The robot was teleoperated by experienced skull base surgeons to remove a phantom pituitary tumor within a skull. Percentage resection was measured by weight. Resection duration was timed. Setting Academic research laboratory. Main Outcome Measures Percentage removal of tumor material and procedure duration. Results Average removal percentage of 79.8 ± 5.9% and average time to complete procedure of 12.5 ± 4.1 minutes (n = 20). Conclusions The robotic system presented here for use in endonasal skull base surgery shows promise in improving the dexterity, tool motion, and end effector capabilities currently available with straight and rigid tools while remaining an effective tool for resecting the tumor.

8.
IEEE Trans Biomed Eng ; 60(9): 2567-75, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23649131

RESUMO

New approaches to intracerebral hemorrhage management are motivated by its high incidence and 40% mortality rate. Surgery is sometimes attempted to decompress the brain, although patient outcomes are similar regardless of whether surgery occurs. We hypothesize that surgical decompression is not more effective because current open surgical techniques disrupt healthy brain tissue to access the clot formed by the hemorrhage, offsetting the benefits of surgery. To address this, we propose a less invasive needle-based approach in which the clot is debulked from within using a superelastic, precurved aspiration cannula that is deployed from a needle. The tip of this aspiration cannula is controlled by coordinated insertion and retraction of the cannula and needle, as well as axial rotation of the cannula. We describe the design of a sterilizable and biocompatible robot that can control the three degrees of freedom of the needle and cannula. Image guidance is achieved by adapting an approach originally developed for brain biopsy. We provide an optimization method for the selection of the precurvatures of one or more sequentially used aspiration cannulas to maximize hemorrhage evacuation, based on preoperative medical image data. In vitro experiments demonstrate the feasibility of evacuating 83-92% of hemorrhage volume, depending on the number of tubes and deployment method used.


Assuntos
Catéteres , Hemorragia Cerebral/cirurgia , Modelos Biológicos , Robótica/instrumentação , Cirurgia Assistida por Computador/métodos , Encéfalo/fisiologia , Encéfalo/cirurgia , Desenho de Equipamento , Humanos , Imagens de Fantasmas , Crânio/cirurgia , Sucção/instrumentação , Sucção/métodos
9.
IEEE Trans Biomed Eng ; 60(4): 906-9, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23204267

RESUMO

In the quest to design higher curvature bevel-steered needles, kinked bevel-tips have been one of the most successful approaches yet proposed. However, the price to be paid for enhancing steerability in this way has been increased tissue damage, since the prebent tip cuts a local helical path into tissue when axially rotated. This is problematic when closed-loop control is desired, because the controller will typically require the needle to rotate rapidly, and it is particularly problematic when duty cycling (i.e., continual needle spinning) is used to adjust curvature. In this paper, we propose a new flexure-based needle tip design that provides the enhanced steerability of kinked bevel-tip needles, while simultaneously minimizing tissue damage.


Assuntos
Agulhas , Cirurgia Assistida por Computador/instrumentação , Animais , Desenho de Equipamento , Modelos Biológicos , Músculo Esquelético/cirurgia , Imagens de Fantasmas , Maleabilidade , Robótica/instrumentação , Suínos
10.
IEEE ASME Trans Mechatron ; 19(3): 996-1006, 2013 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-25089086

RESUMO

Mechanics-based models of concentric tube continuum robots have recently achieved a level of sophistication that makes it possible to begin to apply these robots to a variety of real-world clinical scenarios. Endonasal skull base surgery is one such application, where their small diameter and tentacle like dexterity are particularly advantageous. In this paper we provide the medical motivation for an endonasal surgical robot featuring concentric tube manipulators, and describe our model-based design and teleoperation methods, as well as a complete system incorporating image-guidance. Experimental demonstrations using a laparoscopic training task, a cadaver reachability study, and a phantom tumor resection experiment illustrate that both novice and expert users can effectively teleoperate the system, and that skull base surgeons can use the robot to achieve their objectives in a realistic surgical scenario.

11.
J Neurol Surg B Skull Base ; 74(6): 337-41, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24436934

RESUMO

Objectives Our laboratory is developing a surgical robotic system to further improve dexterity and visualization that will allow for broader application of transnasal skull base surgery. To optimize this system, intraoperative force data are required. Using a modified curette, force data were recorded and analyzed during pituitary tumor excision. Design A neurosurgical curette was modified by the addition of a force sensor. The instrument was validated in an in vitro model to measure forces during simulated pituitary tumor excision. Following this, intraoperative force data from three patients during transnasal endoscopic excision of pituitary tumors was obtained. Setting Academic medical center. Main Outcome Measures Forces applied at the skull base during surgical excision of pituitary tumors. Results Average forces applied during in vitro testing ranged from 0.1 to 0.15 N. Average forces recorded during in vivo testing ranged from 0.1 to 0.5 N. Maximal forces occurred with collisions of the bony sella. The average maximal force was 1.61 N. There were no complications related to the use of the modified curette. Conclusions Forces to remove pituitary tumor are small and are similar between patients. The in vitro model presented here is adequate for further testing of a robotic skull base surgery system.

12.
IEEE Trans Robot ; 29(5): 1289-1299, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25400527

RESUMO

Steerable needles can potentially increase the accuracy of needle-based diagnosis and therapy delivery, provided they can be adequately controlled based on medical image information. We propose a novel sliding mode control law that can be used to deliver the tip of a flexible asymmetric-tipped needle to a desired point, or to track a desired trajectory within tissue. The proposed control strategy requires no a priori knowledge of model parameters, has bounded input speeds, and requires little computational resources. We show that if the standard nonholonomic model for tip-steered needles holds, then the control law will converge to desired targets in a reachable workspace, within a tolerance that can be defined by the control parameters. Experimental results validate the control law for target points and trajectory following in phantom tissue and ex vivo liver. Experiments with targets that move during insertion illustrate robustness to disturbances caused by tissue deformation.

13.
J Med Device ; 6(4): 410071-410077, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23904905

RESUMO

Accessing a specific, predefined location identified in medical images is a common interventional task for biopsies and drug or therapy delivery. While conventional surgical needles provide little steerability, concentric tube continuum devices enable steering through curved trajectories. These devices are usually developed as robotic systems. However, manual actuation of concentric tube devices is particularly useful for initial transfer into the clinic since the Food and Drug Administration (FDA) and Institutional Review Board (IRB) approval process of manually operated devices is simple compared to their motorized counterparts. In this paper, we present a manual actuation device for the deployment of steerable cannulas. The design focuses on compactness, modularity, usability, and sterilizability. Further, the kinematic mapping from joint space to Cartesian space is detailed for an example concentric tube device. Assessment of the device's accuracy was performed in free space, as well as in an image-guided surgery setting, using tracked 2D ultrasound.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...