Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
J Open Source Softw ; 9(96): 6332, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38650605

RESUMO

Vertebrate genomes contain lower than expected frequencies of the CpG dinucleotide. Consequently, many vertebrate viruses have evolved to mimic this composition, possibly in order to evade host antiviral defences (Greenbaum et al., 2008). For example, the antiviral protein ZAP binds CpGs in viral single stranded RNA with specific spacing requirements (Gonçalves-Carneiro et al., 2022), though CpGs are also likely depleted in viral genomes due to other selective pressures (Forni et al., 2023). Increasing CpG abundance by synonymous recoding could facilitate attenuation of viruses without compromising their epitope antigenicity by changing non-CpG codons to alternatives containing CpG without changing the overall amino acid sequence (Gonçalves-Carneiro et al., 2022; Le Nouën et al., 2019; Sharp et al., 2023). There are three ways CpGs can be synonymously introduced in codons: at positions 1-2 for arginine (e.g. AGA → CGA), 2-3 for several amino acids (e.g. ACA → ACG), or in a 3-1 split configuration, if a subsequent codon begins with a G (e.g. ATA-GCA → ATC-GCA). Syn-CpG-Spacer is a Python progressive web app (PWA) (MDN Web Docs, 2023) made with the Panel library (Panel Development Team, 2024) that allows for consistent recoding of viral sequences and applying biologically relevant constraints. These include setting a minimum gap between CpG's, optimising for an average CpG gap, protecting cis-acting regulatory signals from modification, and modulating the A-content in the overall sequence. The app features a sequence viewer made with the Bokeh library (Bokeh Development Team, 2024) that highlights CpG dinucleotides, allowing for efficient analysis of the resulting distribution of CpGs. This is complemented by a statistical data table. Utilising Biopython (Cock et al., 2009) modules, the user can load their sequence as a FASTA file and download the outputs as an alignment in the same format. As a PWA running on Pyodide (The Pyodide development team, 2023), the code is only executed in the user's browser and they can install the app onto their machine for offline use.

2.
J Gen Virol ; 104(12)2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38063292

RESUMO

The shortcomings of current direct-acting anti-viral therapy against human cytomegalovirus (HCMV) has led to interest in host-directed therapy. Here we re-examine the use of interferon proteins to inhibit HCMV replication utilizing both high and low passage strains of HCMV. Pre-treatment of cells with interferon alpha (IFNα) was required for robust and prolonged inhibition of both low and high passage HCMV strains, with no obvious toxicity, and was associated with an increased anti-viral state in HCMV-infected cells. Pre-treatment of cells with IFNα led to poor expression of HCMV immediate-early proteins from both high and low passage strains, which was associated with the presence of the anti-viral factor SUMO-PML. Inhibition of HCMV replication in the presence of IFNα involving ZAP proteins was HCMV strain-dependent, wherein a high passage HCMV strain was obviously restricted by ZAP and a low passage strain was not. This suggested that strain-specific combinations of anti-viral factors were involved in inhibition of HCMV replication in the presence of IFNα. Overall, this work further supports the development of strategies involving IFNα that may be useful to inhibit HCMV replication and highlights the complexity of the anti-viral response to HCMV in the presence of IFNα.


Assuntos
Citomegalovirus , Interferon-alfa , Humanos , Citomegalovirus/fisiologia , Interferon-alfa/farmacologia , Fatores de Transcrição/metabolismo , Replicação Viral , Antivirais/farmacologia , Antivirais/metabolismo
3.
JAMA Netw Open ; 6(4): e237230, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37040116

RESUMO

Importance: Bayesian clinical trial designs are increasingly common; given their promotion by the US Food and Drug Administration, the future use of the bayesian approach will only continue to increase. Innovations possible when using the bayesian approach improve the efficiency of drug development and the accuracy of clinical trials, especially in the context of substantial data missingness. Objective: To explain the foundations, interpretations, and scientific justification of the bayesian approach in the setting of lecanemab trial 201, a bayesian-designed phase 2 dose-finding trial; to demonstrate the efficiency of using a bayesian design; and to show how it accommodates innovations in the prospective design and also treatment-dependent types of missing data. Design, Setting, and Participants: This study was a bayesian analysis of a clinical trial comparing the efficacy of 5 lecanemab 201 dosages for treatment of early Alzheimer disease. The goal of the lecanemab 201 trial was to identify the effective dose 90 (ED90), the dose achieving at least 90% of the maximum effectiveness of doses considered in the trial. This study assessed the bayesian adaptive randomization used, in which patients were preferentially assigned to doses that would give more information about the ED90 and its efficacy. Interventions: Patients in the lecanemab 201 trial were adaptively randomized to 1 of 5 dose regimens or placebo. Main Outcomes and Measures: The primary end point of lecanemab 201 was the Alzheimer Disease Composite Clinical Score (ADCOMS) at 12 months with continued treatment and follow-up out to 18 months. Results: A total 854 patients were included in trial treatment: 238 were in the placebo group (median age, 72 years [range, 50-89 years]; 137 female [58%]) and 587 were assigned to a lecanemab 201 treatment group (median age, 72 years [range, 50-90 years]; 272 female [46%]). The bayesian approach improved the efficiency of a clinical trial by prospectively adapting to the trial's interim results. By the trial's end more patients had been assigned to the better-performing doses: 253 (30%) and 161 (19%) patients to 10 mg/kg monthly and 10 mg/kg biweekly vs 51 (6%), 52 (6%), and 92 (11%) patients to 5 mg/kg monthly, 2.5 mg/kg biweekly, and 5 mg/kg biweekly, respectively. The trial identified 10 mg/kg biweekly as the ED90. The change in ADCOMS of the ED90 vs placebo was -0.037 at 12 months and -0.047 at 18 months. The bayesian posterior probability that the ED90 was superior to placebo was 97.5% at 12 months and 97.7% at 18 months. The respective probabilities of super-superiority were 63.8% and 76.0%. The primary analysis of the randomized bayesian lecanemab 201 trial found in the context of missing data that the most effective dose of lecanemab nearly doubles its estimated efficacy at 18 months of follow-up in comparison with restricting analysis to patients who completed the full 18 months of the trial. Conclusions and Relevance: Innovations associated with the bayesian approach can improve the efficiency of drug development and the accuracy of clinical trials, even in the context of substantial data missingness. Trial Registration: ClinicalTrials.gov Identifier: NCT01767311.


Assuntos
Doença de Alzheimer , Humanos , Feminino , Idoso , Teorema de Bayes
4.
Alzheimers Dement (N Y) ; 9(1): e12377, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36949897

RESUMO

INTRODUCTION: Lecanemab is a humanized immunoglobulin G1 (IgG1) monoclonal antibody that preferentially targets soluble aggregated Aß species (protofibrils) with activity at amyloid plaques. Amyloid-related imaging abnormalities (ARIA) profiles appear to differ for various anti-amyloid antibodies. Here, we present ARIA data from a large phase 2 lecanemab trial (Study 201) in early Alzheimer's disease. METHODS: Study 201 trial was double-blind, placebo-controlled (core) with an open-label extension (OLE). Observed ARIA events were summarized and modeled via Kaplan-Meier graphs. An exposure response model was developed. RESULTS: In the phase 2 core and OLE, there was a low incidence of ARIA-E (<10%), with <3% symptomatic cases. ARIA-E was generally asymptomatic, mild-to-moderate in severity, and occurred early (<3 months). ARIA-E was correlated with maximum lecanemab serum concentration and incidence was higher in apolipoprotein E4 (ApoE4) homozygous carriers. ARIA-H and ARIA-E occurred with similar frequency in core and OLE. DISCUSSION: Lecanemab can be administered without titration with modest incidence of ARIA.

5.
J Virol ; 97(3): e0184622, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36916924

RESUMO

Cellular antiviral factors that recognize viral nucleic acid can inhibit virus replication. These include the zinc finger antiviral protein (ZAP), which recognizes high CpG dinucleotide content in viral RNA. Here, we investigated the ability of ZAP to inhibit the replication of human cytomegalovirus (HCMV). Depletion of ZAP or its cofactor KHNYN increased the titer of the high-passage HCMV strain AD169 but had little effect on the titer of the low-passage strain Merlin. We found no obvious difference in expression of several viral proteins between AD169 and Merlin in ZAP knockdown cells, but observed a larger increase in infectious virus in AD169 compared to Merlin in the absence of ZAP, suggesting that ZAP inhibited events late in AD169 replication. In addition, there was no clear difference in the CpG abundance of AD169 and Merlin RNAs, indicating that genomic content of the two virus strains was unlikely to be responsible for differences in their sensitivity to ZAP. Instead, we observed less ZAP expression in Merlin-infected cells late in replication compared to AD169-infected cells, which may be related to different abilities of the two virus strains to regulate interferon signaling. Therefore, there are strain-dependent differences in the sensitivity of HCMV to ZAP, and the ability of low-passage HCMV strain Merlin to evade inhibition by ZAP is likely related to its ability to regulate interferon signaling, not the CpG content of RNAs produced from its genome. IMPORTANCE Determining the function of cellular antiviral factors can inform our understanding of virus replication. The zinc finger antiviral protein (ZAP) can inhibit the replication of diverse viruses. Here, we examined ZAP interaction with the DNA virus human cytomegalovirus (HCMV). We found HCMV strain-dependent differences in the ability of ZAP to influence HCMV replication, which may be related to the interaction of HCMV strains with the type I interferon system. These observations affect our current understanding of how ZAP restricts HCMV and how HCMV interacts with the type I interferon system.


Assuntos
Citomegalovirus , Interferon Tipo I , Humanos , Citomegalovirus/metabolismo , Neurofibromina 2/metabolismo , Neurofibromina 2/farmacologia , Proteínas de Ligação a RNA/metabolismo , Replicação Viral/fisiologia , Antivirais/farmacologia , Interferon Tipo I/metabolismo , Dedos de Zinco
6.
CPT Pharmacometrics Syst Pharmacol ; 12(4): 444-461, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36632701

RESUMO

Antibody-mediated removal of aggregated ß-amyloid (Aß) is the current, most clinically advanced potential disease-modifying treatment approach for Alzheimer's disease. We describe a quantitative systems pharmacology (QSP) approach of the dynamics of Aß monomers, oligomers, protofibrils, and plaque using a detailed microscopic model of Aß40 and Aß42 aggregation and clearance of aggregated Aß by activated microglia cells, which is enhanced by the interaction of antibody-bound Aß. The model allows for the prediction of Aß positron emission tomography (PET) imaging load as measured by a standardized uptake value ratio. A physiology-based pharmacokinetic model is seamlessly integrated to describe target exposure of monoclonal antibodies and simulate dynamics of cerebrospinal fluid (CSF) and plasma biomarkers, including CSF Aß42 and plasma Aß42 /Aß40 ratio biomarkers. Apolipoprotein E genotype is implemented as a difference in microglia clearance. By incorporating antibody-bound, plaque-mediated macrophage activation in the perivascular compartment, the model also predicts the incidence of amyloid-related imaging abnormalities with edema (ARIA-E). The QSP platform is calibrated with pharmacological and clinical information on aducanumab, bapineuzumab, crenezumab, gantenerumab, lecanemab, and solanezumab, predicting adequately the change in PET imaging measured amyloid load and the changes in the plasma Aß42 /Aß40 ratio while slightly overestimating the change in CSF Aß42 . ARIA-E is well predicted for all antibodies except bapineuzumab. This QSP model could support the clinical trial design of different amyloid-modulating interventions, define optimal titration and maintenance schedules, and provide a first step to understand the variability of biomarker response in clinical practice.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/tratamento farmacológico , Farmacologia em Rede , Peptídeos beta-Amiloides , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Biomarcadores , Fragmentos de Peptídeos , Tomografia por Emissão de Pósitrons
7.
J Virol ; 97(1): e0087222, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36633408

RESUMO

The zinc finger antiviral protein (ZAP) inhibits viral replication by directly binding CpG dinucleotides in cytoplasmic viral RNA to inhibit protein synthesis and target the RNA for degradation. ZAP evolved in tetrapods and there are clear orthologs in reptiles, birds, and mammals. When ZAP emerged, other proteins may have evolved to become cofactors for its antiviral activity. KHNYN is a putative endoribonuclease that is required for ZAP to restrict retroviruses. To determine its evolutionary path after ZAP emerged, we compared KHNYN orthologs in mammals and reptiles to those in fish, which do not encode ZAP. This identified residues in KHNYN that are highly conserved in species that encode ZAP, including several in the CUBAN domain. The CUBAN domain interacts with NEDD8 and Cullin-RING E3 ubiquitin ligases. Deletion of the CUBAN domain decreased KHNYN antiviral activity, increased protein expression and increased nuclear localization. However, mutation of residues required for the CUBAN domain-NEDD8 interaction increased KHNYN abundance but did not affect its antiviral activity or cytoplasmic localization, indicating that Cullin-mediated degradation may control its homeostasis and regulation of protein turnover is separable from its antiviral activity. By contrast, the C-terminal residues in the CUBAN domain form a CRM1-dependent nuclear export signal (NES) that is required for its antiviral activity. Deletion or mutation of the NES increased KHNYN nuclear localization and decreased its interaction with ZAP. The final 2 positions of this NES are not present in fish KHNYN orthologs and we hypothesize their evolution allowed KHNYN to act as a ZAP cofactor. IMPORTANCE The interferon system is part of the innate immune response that inhibits viruses and other pathogens. This system emerged approximately 500 million years ago in early vertebrates. Since then, some genes have evolved to become antiviral interferon-stimulated genes (ISGs) while others evolved so their encoded protein could interact with proteins encoded by ISGs and contribute to their activity. However, this remains poorly characterized. ZAP is an ISG that arose during tetrapod evolution and inhibits viral replication. Because KHNYN interacts with ZAP and is required for its antiviral activity against retroviruses, we conducted an evolutionary analysis to determine how specific amino acids in KHNYN evolved after ZAP emerged. This identified a nuclear export signal that evolved in tetrapods and is required for KHNYN to traffic in the cell and interact with ZAP. Overall, specific residues in KHNYN evolved to allow it to act as a cofactor for ZAP antiviral activity.


Assuntos
Evolução Molecular , Sinais de Exportação Nuclear , Proteínas de Ligação a RNA , Ubiquitina-Proteína Ligases , Animais , Proteínas Culina/metabolismo , Interferons/genética , RNA Viral/genética , Replicação Viral/fisiologia , Proteínas de Ligação a RNA/genética , Ubiquitina-Proteína Ligases/genética
8.
Alzheimers Dement ; 19(4): 1227-1233, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35971310

RESUMO

INTRODUCTION: The Alzheimer's disease (AD) continuum begins with a long asymptomatic or preclinical stage, during which amyloid beta (Aß) is accumulating for more than a decade prior to widespread cortical tauopathy, neurodegeneration, and manifestation of clinical symptoms. The AHEAD 3-45 Study (BAN2401-G000-303) is testing whether intervention with lecanemab (BAN2401), a humanized immunoglobulin 1 (IgG1) monoclonal antibody that preferentially targets soluble aggregated Aß, initiated during this asymptomatic stage can slow biomarker changes and/or cognitive decline. The AHEAD 3-45 Study is conducted as a Public-Private Partnership of the Alzheimer's Clinical Trial Consortium (ACTC), funded by the National Institute on Aging, National Institutes of Health (NIH), and Eisai Inc. METHODS: The AHEAD 3-45 Study was launched on July 14, 2020, and consists of two sister trials (A3 and A45) in cognitively unimpaired (CU) individuals ages 55 to 80 with specific dosing regimens tailored to baseline brain amyloid levels on screening positron emission tomography (PET) scans: intermediate amyloid (≈20 to 40 Centiloids) for A3 and elevated amyloid (>40 Centiloids) for A45. Both trials are being conducted under a single protocol, with a shared screening process and common schedule of assessments. A3 is a Phase 2 trial with PET-imaging end points, whereas A45 is a Phase 3 trial with a cognitive composite primary end point. The treatment period is 4 years. The study utilizes innovative approaches to enriching the sample with individuals who have elevated brain amyloid. These include recruiting from the Trial-Ready Cohort for Preclinical and Prodromal Alzheimer's disease (TRC-PAD), the Australian Dementia Network (ADNeT) Registry, and the Japanese Trial Ready Cohort (J-TRC), as well as incorporation of plasma screening with the C2N mass spectrometry platform to quantitate the Aß 42/40 ratio (Aß 42/40), which has been shown previously to reliably identify cognitively normal participants not likely to have elevated brain amyloid levels. A blood sample collected at a brief first visit is utilized to "screen out" individuals who are less likely to have elevated brain amyloid, and to determine the participant's eligibility to proceed to PET imaging. Eligibility to randomize into the A3 Trial or A45 Trial is based on the screening PET imaging results. RESULT: The focus of this article is on the innovative design of the study. DISCUSSION: The AHEAD 3-45 Study will test whether with lecanemab (BAN2401) can slow the accumulation of tau and prevent the cognitive decline associated with AD during its preclinical stage. It is specifically targeting both the preclinical and the early preclinical (intermediate amyloid) stages of AD and is the first secondary prevention trial to employ plasma-based biomarkers to accelerate the screening process and potentially substantially reduce the number of screening PET scans.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Tauopatias , Humanos , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides/metabolismo , Austrália , Tauopatias/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Tomografia por Emissão de Pósitrons , Disfunção Cognitiva/metabolismo , Biomarcadores/metabolismo , Proteínas tau/metabolismo
9.
N Engl J Med ; 388(1): 9-21, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36449413

RESUMO

BACKGROUND: The accumulation of soluble and insoluble aggregated amyloid-beta (Aß) may initiate or potentiate pathologic processes in Alzheimer's disease. Lecanemab, a humanized IgG1 monoclonal antibody that binds with high affinity to Aß soluble protofibrils, is being tested in persons with early Alzheimer's disease. METHODS: We conducted an 18-month, multicenter, double-blind, phase 3 trial involving persons 50 to 90 years of age with early Alzheimer's disease (mild cognitive impairment or mild dementia due to Alzheimer's disease) with evidence of amyloid on positron-emission tomography (PET) or by cerebrospinal fluid testing. Participants were randomly assigned in a 1:1 ratio to receive intravenous lecanemab (10 mg per kilogram of body weight every 2 weeks) or placebo. The primary end point was the change from baseline at 18 months in the score on the Clinical Dementia Rating-Sum of Boxes (CDR-SB; range, 0 to 18, with higher scores indicating greater impairment). Key secondary end points were the change in amyloid burden on PET, the score on the 14-item cognitive subscale of the Alzheimer's Disease Assessment Scale (ADAS-cog14; range, 0 to 90; higher scores indicate greater impairment), the Alzheimer's Disease Composite Score (ADCOMS; range, 0 to 1.97; higher scores indicate greater impairment), and the score on the Alzheimer's Disease Cooperative Study-Activities of Daily Living Scale for Mild Cognitive Impairment (ADCS-MCI-ADL; range, 0 to 53; lower scores indicate greater impairment). RESULTS: A total of 1795 participants were enrolled, with 898 assigned to receive lecanemab and 897 to receive placebo. The mean CDR-SB score at baseline was approximately 3.2 in both groups. The adjusted least-squares mean change from baseline at 18 months was 1.21 with lecanemab and 1.66 with placebo (difference, -0.45; 95% confidence interval [CI], -0.67 to -0.23; P<0.001). In a substudy involving 698 participants, there were greater reductions in brain amyloid burden with lecanemab than with placebo (difference, -59.1 centiloids; 95% CI, -62.6 to -55.6). Other mean differences between the two groups in the change from baseline favoring lecanemab were as follows: for the ADAS-cog14 score, -1.44 (95% CI, -2.27 to -0.61; P<0.001); for the ADCOMS, -0.050 (95% CI, -0.074 to -0.027; P<0.001); and for the ADCS-MCI-ADL score, 2.0 (95% CI, 1.2 to 2.8; P<0.001). Lecanemab resulted in infusion-related reactions in 26.4% of the participants and amyloid-related imaging abnormalities with edema or effusions in 12.6%. CONCLUSIONS: Lecanemab reduced markers of amyloid in early Alzheimer's disease and resulted in moderately less decline on measures of cognition and function than placebo at 18 months but was associated with adverse events. Longer trials are warranted to determine the efficacy and safety of lecanemab in early Alzheimer's disease. (Funded by Eisai and Biogen; Clarity AD ClinicalTrials.gov number, NCT03887455.).


Assuntos
Doença de Alzheimer , Anticorpos Monoclonais Humanizados , Nootrópicos , Humanos , Atividades Cotidianas , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Cognição/efeitos dos fármacos , Método Duplo-Cego , Nootrópicos/efeitos adversos , Nootrópicos/farmacologia , Nootrópicos/uso terapêutico
10.
Alzheimers Res Ther ; 14(1): 182, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36482412

RESUMO

BACKGROUND: Lecanemab (BAN2401) is a humanized IgG1 monoclonal antibody that preferentially targets soluble aggregated Aß species (protofibrils) with activity at insoluble fibrils and slowed clinical decline in an 18-month phase 2 proof-of-concept study (Study 201; ClinicalTrials.gov NCT01767311) in 856 subjects with early Alzheimer's disease (AD). In this trial, subjects were randomized to five lecanemab dose regimens or placebo. The primary efficacy endpoint was change from baseline in the Alzheimer's Disease Composite Score (ADCOMS) at 12 months with Bayesian analyses. The key secondary endpoints were ADCOMS at 18 months and Clinical Dementia Rating-Sum-of-Boxes (CDR-SB) and Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog14) at 18 months. The results have been published previously. Herein, we describe the results of sensitivity analyses evaluating the consistency of the lecanemab efficacy results in Study 201 at the identified dose, the ED90, across multiple statistical methods and multiple endpoints over the duration of the study. METHODS: The protocol-specified analysis model was a mixed model for repeated measures (MMRM). Sensitivity analyses address the consistency of the conclusions using multiple statistical methods. These include a disease progression model (DPM), a natural cubic spline (NCS) model, a quadratic mixed model (QMM), and 2 MMRMs with additional covariates. RESULTS: The sensitivity analyses showed positive lecanemab treatment effects for all endpoints and all statistical models considered. The protocol-specified ADCOMS analysis showed a 29.7% slower decline than placebo for ADCOMS at 18 months. The various other analyses of 3 key endpoints showed declines ranging from 26.5 to 55.9%. The results at 12 months are also consistent with those at 18 months. CONCLUSIONS: The conclusion of the primary analysis of the lecanemab Study 201 is strengthened by the consistently positive conclusions across multiple statistical models, across efficacy endpoints, and over time, despite missing data. The 18-month data from this trial was utilized in the design of the confirmatory phase 3 trial (Clarity AD) and allowed for proper powering for multiple, robust outcomes.


Assuntos
Doença de Alzheimer , Humanos , Teorema de Bayes , Doença de Alzheimer/tratamento farmacológico , Estudo de Prova de Conceito , Projetos de Pesquisa
11.
Alzheimers Res Ther ; 14(1): 191, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36544184

RESUMO

BACKGROUND: Lecanemab, a humanized IgG1 monoclonal antibody that targets soluble aggregated Aß species (protofibrils), has demonstrated robust brain fibrillar amyloid reduction and slowing of clinical decline in early AD. The objective of this analysis is to report results from study 201 blinded period (core), the open-label extension (OLE), and gap period (between core and OLE) supporting the effectiveness of lecanemab. METHODS: The lecanemab study 201 core was a double-blind, randomized, placebo-controlled study of 856 patients randomized to one of five dose regimens or placebo. An OLE of study 201 was initiated to allow patients to receive open-label lecanemab 10mg/kg biweekly for up to 24 months, with an intervening off-treatment period (gap period) ranging from 9 to 59 months (mean 24 months). RESULTS: At 12 and 18 months of treatment in the core, lecanemab 10 mg/kg biweekly demonstrated dose-dependent reductions of brain amyloid measured PET and corresponding changes in plasma biomarkers and slowing of cognitive decline. The rates of clinical progression during the gap were similar in lecanemab and placebo subjects, with clinical treatment differences maintained after discontinued dosing over an average of 24 months in the gap period. During the gap, plasma Aß42/40 ratio and p-tau181 levels began to return towards pre-randomization levels more quickly than amyloid PET. At OLE baseline, treatment differences vs placebo at 18 months in the randomized period were maintained across 3 clinical assessments. In the OLE, lecanemab 10 mg/kg biweekly treatment produced dose-dependent reductions in amyloid PET SUVr, improvements in plasma Aß42/40 ratio, and reductions in plasma p-tau181. CONCLUSIONS: Lecanemab treatment resulted in significant reduction in amyloid plaques and a slowing of clinical decline. Data indicate that rapid and pronounced amyloid reduction correlates with clinical benefit and potential disease-modifying effects, as well as the potential to use plasma biomarkers to monitor for lecanemab treatment effects. TRIAL REGISTRATION: ClinicalTrials.gov NCT01767311 .


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/tratamento farmacológico , Encéfalo/diagnóstico por imagem , Anticorpos Monoclonais Humanizados/uso terapêutico , Biomarcadores , Proteínas Amiloidogênicas , Cognição , Peptídeos beta-Amiloides
12.
iScience ; 25(11): 105289, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36339261

RESUMO

Human endogenous retroviruses (HERVs) integrated into the human genome as a result of ancient exogenous infections and currently comprise ∼8% of our genome. The members of the most recently acquired HERV family, HERV-Ks, still retain the potential to produce viral molecules and have been linked to a wide range of diseases including cancer and neurodegeneration. Although a range of tools for HERV detection in NGS data exist, most of them lack wet lab validation and they do not cover all steps of the analysis. Here, we describe RetroSnake, an end-to-end, modular, computationally efficient, and customizable pipeline for the discovery of HERVs in short-read NGS data. RetroSnake is based on an extensively wet-lab validated protocol, it covers all steps of the analysis from raw data to the generation of annotated results presented as an interactive html file, and it is easy to use by life scientists without substantial computational training. Availability and implementation: The Pipeline and an extensive documentation are available on GitHub.

13.
J Virol ; 96(23): e0125022, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36350154

RESUMO

The appearance of new dominant variants of concern (VOC) of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) threatens the global response to the coronavirus disease 2019 (COVID-19) pandemic. Of these, the alpha variant (also known as B.1.1.7), which appeared initially in the United Kingdom, became the dominant variant in much of Europe and North America in the first half of 2021. The spike (S) glycoprotein of alpha acquired seven mutations and two deletions compared to the ancestral virus, including the P681H mutation adjacent to the polybasic cleavage site, which has been suggested to enhance S cleavage. Here, we show that the alpha spike protein confers a level of resistance to beta interferon (IFN-ß) in human lung epithelial cells. This correlates with resistance to an entry restriction mediated by interferon-induced transmembrane protein 2 (IFITM2) and a pronounced infection enhancement by IFITM3. Furthermore, the P681H mutation is essential for resistance to IFN-ß and context-dependent resistance to IFITMs in the alpha S. P681H reduces dependence on endosomal cathepsins, consistent with enhanced cell surface entry. However, reversion of H681 does not reduce cleaved spike incorporation into particles, indicating that it exerts its effect on entry and IFN-ß downstream of furin cleavage. Overall, we suggest that, in addition to adaptive immune escape, mutations associated with VOC may well also confer a replication and/or transmission advantage through adaptation to resist innate immune mechanisms. IMPORTANCE Accumulating evidence suggests that variants of concern (VOC) of SARS-CoV-2 evolve to evade the human immune response, with much interest focused on mutations in the spike protein that escape from antibodies. However, resistance to the innate immune response is essential for efficient viral replication and transmission. Here, we show that the alpha (B.1.1.7) VOC of SARS-CoV-2 is substantially more resistant to type I interferons than the parental Wuhan-like virus. This correlates with resistance to the antiviral protein IFITM2 and enhancement by its paralogue IFITM3. The key determinant of this is a proline-to-histidine change at position 681 in S adjacent to the furin cleavage site, which in the context of the alpha spike modulates cell entry pathways of SARS-CoV-2. Reversion of the mutation is sufficient to restore interferon and IFITM2 sensitivity, highlighting the dynamic nature of the SARS CoV-2 as it adapts to both innate and adaptive immunity in the humans.


Assuntos
COVID-19 , Interferon Tipo I , Humanos , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Furina/metabolismo , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Linhagem Celular , Mutação , Proteínas de Membrana/metabolismo , Proteínas de Ligação a RNA/metabolismo
14.
CPT Pharmacometrics Syst Pharmacol ; 11(12): 1578-1591, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36165093

RESUMO

Lecanemab is a humanized immunoglobulin G1 monoclonal antibody that selectively binds to soluble Aß aggregate species, while demonstrating low affinity for Aß monomer. This article describes the population pharmacokinetic (PK) and PK/pharmacodynamic (PD) analyses for amyloid plaques, as measured using positron emission tomography (PET), and biomarkers of amyloid pathology as evidenced by Aß42/40 ratio and plasma p-tau181 following i.v. administration of lecanemab in subjects with early Alzheimer's disease. Lecanemab PKs were well-characterized with a two-compartment model with first-order elimination. Final PK model contained covariate effects of anti-drug antibody positive status, sex, body weight, and albumin on clearance. The time course of amyloid PET standard uptake ratio (SUVr), plasma Aß42/40 ratio, and p-tau181 were described using indirect response models with lecanemab exposure as a maximum effect function stimulating the reduction of SUVr, and as a linear function increasing Aß42/40 ratio and decreasing p-tau181 formation rates. PK/PD simulations show that 10 mg/kg biweekly dosing results in larger and faster decrease in SUVr and p-tau181 and increase in Aß42/40 ratio as compared to 10 mg/kg monthly dose. Furthermore, the PK/PD simulations showed that after treatment discontinuation the brain amyloid re-accumulation to baseline levels is slow with a recovery half-life of ~4 years, whereas plasma Aß42/40 ratio and p-tau181 return to baseline levels faster than amyloid. Given the relationship between changes in amyloid PET SUVr and soluble biomarkers, the developed PK/PD models can be used to inform lecanemab dose regimens in future clinical studies.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/tratamento farmacológico , Fragmentos de Peptídeos , Tomografia por Emissão de Pósitrons/métodos , Biomarcadores
15.
J Intensive Care Soc ; 23(3): 318-324, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36033245

RESUMO

Sepsis is a common illness. Immune responses are considered major drivers of sepsis illness and outcomes. However, there are no proven immunomodulator therapies in sepsis. We hypothesised that in-depth characterisation of sepsis-specific immune trajectory may inform immunomodulation in sepsis-related critical illness. We describe the protocol of the IMMERSE study to address this hypothesis. We include critically ill sepsis patients without documented immune comorbidity and age-sex matched cardiac surgical patients as controls. We plan to perform an in-depth biological characterisation of innate and adaptive immune systems, platelet function, humoral components and transcriptional determinants of the immune system responses in sepsis. This will be done at pre-specified time points during their critical illness to generate an illness trajectory. The sample size for each biological assessment is different and is described in detail. In summary, the overall aim of the IMMERSE study is to increase the granularity of longitudinal immunology model of sepsis to inform future immunomodulation trials.

16.
PLoS Pathog ; 18(5): e1010530, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35533151

RESUMO

Ebola virus (EBOV) causes highly pathogenic disease in primates. Through screening a library of human interferon-stimulated genes (ISGs), we identified TRIM25 as a potent inhibitor of EBOV transcription-and-replication-competent virus-like particle (trVLP) propagation. TRIM25 overexpression inhibited the accumulation of viral genomic and messenger RNAs independently of the RNA sensor RIG-I or secondary proinflammatory gene expression. Deletion of TRIM25 strongly attenuated the sensitivity of trVLPs to inhibition by type-I interferon. The antiviral activity of TRIM25 required ZAP and the effect of type-I interferon was modulated by the CpG dinucleotide content of the viral genome. We find that TRIM25 interacts with the EBOV vRNP, resulting in its autoubiquitination and ubiquitination of the viral nucleoprotein (NP). TRIM25 is recruited to incoming vRNPs shortly after cell entry and leads to dissociation of NP from the vRNA. We propose that TRIM25 targets the EBOV vRNP, exposing CpG-rich viral RNA species to restriction by ZAP.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Interferon Tipo I , Animais , Antivirais/metabolismo , Ebolavirus/metabolismo , Interferon Tipo I/metabolismo , Ribonucleoproteínas/genética , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Replicação Viral/genética
18.
Front Bioinform ; 2: 1062328, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36845320

RESUMO

There is a growing interest in the study of human endogenous retroviruses (HERVs) given the substantial body of evidence that implicates them in many human diseases. Although their genomic characterization presents numerous technical challenges, next-generation sequencing (NGS) has shown potential to detect HERV insertions and their polymorphisms in humans. Currently, a number of computational tools to detect them in short-read NGS data exist. In order to design optimal analysis pipelines, an independent evaluation of the available tools is required. We evaluated the performance of a set of such tools using a variety of experimental designs and datasets. These included 50 human short-read whole-genome sequencing samples, matching long and short-read sequencing data, and simulated short-read NGS data. Our results highlight a great performance variability of the tools across the datasets and suggest that different tools might be suitable for different study designs. However, specialized tools designed to detect exclusively human endogenous retroviruses consistently outperformed generalist tools that detect a wider range of transposable elements. We suggest that, if sufficient computing resources are available, using multiple HERV detection tools to obtain a consensus set of insertion loci may be ideal. Furthermore, given that the false positive discovery rate of the tools varied between 8% and 55% across tools and datasets, we recommend the wet lab validation of predicted insertions if DNA samples are available.

19.
PLoS Pathog ; 17(10): e1009726, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34695163

RESUMO

The zinc finger antiviral protein (ZAP) is a broad inhibitor of virus replication. Its best-characterized function is to bind CpG dinucleotides present in viral RNAs and, through the recruitment of TRIM25, KHNYN and other cofactors, target them for degradation or prevent their translation. The long and short isoforms of ZAP (ZAP-L and ZAP-S) have different intracellular localization and it is unclear how this regulates their antiviral activity against viruses with different sites of replication. Using ZAP-sensitive and ZAP-insensitive human immunodeficiency virus type I (HIV-1), which transcribe the viral RNA in the nucleus and assemble virions at the plasma membrane, we show that the catalytically inactive poly-ADP-ribose polymerase (PARP) domain in ZAP-L is essential for CpG-specific viral restriction. Mutation of a crucial cysteine in the C-terminal CaaX box that mediates S-farnesylation and, to a lesser extent, the residues in place of the catalytic site triad within the PARP domain, disrupted the activity of ZAP-L. Addition of the CaaX box to ZAP-S partly restored antiviral activity, explaining why ZAP-S lacks antiviral activity for CpG-enriched HIV-1 despite conservation of the RNA-binding domain. Confocal microscopy confirmed the CaaX motif mediated localization of ZAP-L to vesicular structures and enhanced physical association with intracellular membranes. Importantly, the PARP domain and CaaX box together jointly modulate the interaction between ZAP-L and its cofactors TRIM25 and KHNYN, implying that its proper subcellular localisation is required to establish an antiviral complex. The essential contribution of the PARP domain and CaaX box to ZAP-L antiviral activity was further confirmed by inhibition of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication, which replicates in double-membrane vesicles derived from the endoplasmic reticulum. Thus, compartmentalization of ZAP-L on intracellular membranes provides an essential effector function in ZAP-L-mediated antiviral activity against divergent viruses with different subcellular replication sites.


Assuntos
Prenilação/fisiologia , Vírus de RNA/efeitos dos fármacos , Proteínas de Ligação a RNA/farmacologia , Replicação Viral/fisiologia , Ilhas de CpG/fisiologia , Células HEK293 , HIV-1/fisiologia , Células HeLa , Humanos , Vírus de RNA/fisiologia , RNA Viral/química , RNA Viral/metabolismo , Motivos de Ligação ao RNA/fisiologia , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , SARS-CoV-2/fisiologia , Transfecção , Replicação Viral/efeitos dos fármacos
20.
Mol Ther Methods Clin Dev ; 23: 147-157, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34703838

RESUMO

The antiviral protein ZAP binds CpG dinucleotides in viral RNA to inhibit replication. This has likely led to the CpG suppression observed in many RNA viruses, including retroviruses. Sequences added to retroviral vector genomes, such as internal promoters, transgenes, or regulatory elements, substantially increase CpG abundance. Because these CpGs could allow retroviral vector RNA to be targeted by ZAP, we analyzed whether it restricts vector production, transduction efficiency, and transgene expression. Surprisingly, even though CpG-high HIV-1 was efficiently inhibited by ZAP in HEK293T cells, depleting ZAP did not substantially increase lentiviral vector titer using several packaging and genome plasmids. ZAP overexpression also did not inhibit lentiviral vector titer. In addition, decreasing CpG abundance in a lentiviral vector genome did not increase its titer, and a gammaretroviral vector derived from murine leukemia virus was not substantially restricted by ZAP. Overall, we show that the increased CpG abundance in retroviral vectors relative to the wild-type retroviruses they are derived from does not intrinsically sensitize them to ZAP. Further understanding of how ZAP specifically targets transcripts to inhibit their expression may allow the development of CpG sequence contexts that efficiently recruit or evade this antiviral system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...