Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Rep ; 43(7): 185, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951279

RESUMO

The Oryza genus, containing Oryza sativa L., is quintessential to sustain global food security. This genus has a lot of sophisticated molecular mechanisms to cope with environmental stress, particularly during vulnerable stages like flowering. Recent studies have found key involvements and genetic modifications that increase resilience to stress, including exogenous application of melatonin, allantoin, and trehalose as well as OsSAPK3 and OsAAI1 in the genetic realm. Due to climate change and anthropogenic reasons, there is a rise in sea level which raises a concern of salinity stress. It is tackled through osmotic adjustment and ion homeostasis, mediated by genes like P5CS, P5CR, GSH1, GSH2, and SPS, and ion transporters like NHX, NKT, and SKC, respectively. Oxidative damage is reduced by a complex action of antioxidants, scavenging RONS. A complex action of genes mediates cold stress with studies highlighting the roles of OsWRKY71, microRNA2871b, OsDOF1, and OsICE1. There is a need to research the mechanism of action of proteins like OsRbohA in ROS control and the action of regulatory genes in stress response. This is highly relevant due to the changing climate which will raise a lot of environmental changes that will adversely affect production and global food security if certain countermeasures are not taken. Overall, this study aims to unravel the molecular intricacies of ROS and RNS signaling networks in Oryza plants under stress conditions, with the ultimate goal of informing strategies for enhancing stress tolerance and crop performance in this important agricultural genus.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza , Espécies Reativas de Nitrogênio , Espécies Reativas de Oxigênio , Transdução de Sinais , Estresse Fisiológico , Oryza/genética , Oryza/metabolismo , Oryza/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/genética , Espécies Reativas de Nitrogênio/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
2.
Plant Cell Environ ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436101

RESUMO

A relative of cultivated rice (Oryza sativa L.), weedy or red rice (Oryza spp.) is currently recognized as the dominant weed, leading to a drastic loss of yield of cultivated rice due to its highly competitive abilities like producing more tillers, panicles, and biomass with better nutrient uptake. Due to its high nutritional value, antioxidant properties (anthocyanin and proanthocyanin), and nutrient absorption ability, weedy rice is gaining immense research attentions to understand its genetic constitution to augment future breeding strategies and to develop nutrition-rich functional foods. Consequently, this review focuses on the unique gene source of weedy rice to enhance the cultivated rice for its crucial features like water use efficiency, abiotic and biotic stress tolerance, early flowering, and the red pericarp of the seed. It explores the debating issues on the origin and evolution of weedy rice, including its high diversity, signalling aspects, quantitative trait loci (QTL) mapping under stress conditions, the intricacy of the mechanism in the expression of the gene flow, and ecological challenges of nutrient removal by weedy rice. This review may create a foundation for future researchers to understand the gene flow between cultivated crops and weedy traits and support an improved approach for the applicability of several models in predicting multiomics variables.

3.
Microb Ecol ; 86(1): 49-74, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35657425

RESUMO

Forest soils are a pressing subject of worldwide research owing to the several roles of forests such as carbon sinks. Currently, the living soil ecosystem has become dreadful as a consequence of several anthropogenic activities including climate change. Climate change continues to transform the living soil ecosystem as well as the soil microbiome of planet Earth. The majority of studies have aimed to decipher the role of forest soil bacteria and fungi to understand and predict the impact of climate change on soil microbiome community structure and their ecosystem in the environment. In forest soils, microorganisms live in diverse habitats with specific behavior, comprising bulk soil, rhizosphere, litter, and deadwood habitats, where their communities are influenced by biotic interactions and nutrient accessibility. Soil microbiome also drives multiple crucial steps in the nutrient biogeochemical cycles (carbon, nitrogen, phosphorous, and sulfur cycles). Soil microbes help in the nitrogen cycle through nitrogen fixation during the nitrogen cycle and maintain the concentration of nitrogen in the atmosphere. Soil microorganisms in forest soils respond to various effects of climate change, for instance, global warming, elevated level of CO2, drought, anthropogenic nitrogen deposition, increased precipitation, and flood. As the major burning issue of the globe, researchers are facing the major challenges to study soil microbiome. This review sheds light on the current scenario of knowledge about the effect of climate change on living soil ecosystems in various climate-sensitive soil ecosystems and the consequences for vegetation-soil-climate feedbacks.


Assuntos
Ecossistema , Microbiota , Mudança Climática , Solo/química , Florestas , Nitrogênio/análise , Microbiologia do Solo , Carbono
4.
Front Plant Sci ; 14: 1297706, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38250451

RESUMO

The rhizosphere consists of a plethora of microbes, interacting with each other as well as with the plants present in proximity. The root exudates consist of a variety of secondary metabolites such as strigolactones and other phenolic compounds such as coumarin that helps in facilitating communication and forming associations with beneficial microbes in the rhizosphere. Among different secondary metabolites flavonoids (natural polyphenolic compounds) continuously increasing attention in scientific fields for showing several slews of biological activities. Flavonoids possess a benzo-γ-pyrone skeleton and several classes of flavonoids have been reported on the basis of their basic structure such as flavanones, flavonols, anthocyanins, etc. The mutualistic association between plant growth-promoting rhizobacteria (PGPR) and plants have been reported to help the host plants in surviving various biotic and abiotic stresses such as low nitrogen and phosphorus, drought and salinity stress, pathogen attack, and herbivory. This review sheds light upon one such component of root exudate known as flavonoids, which is well known for nodulation in legume plants. Apart from the well-known role in inducing nodulation in legumes, this group of compounds has anti-microbial and antifungal properties helping in establishing defensive mechanisms and playing a major role in forming mycorrhizal associations for the enhanced acquisition of nutrients such as iron and phosphorus. Further, this review highlights the role of flavonoids in plants for recruiting non-mutualistic microbes under stress and other important aspects regarding recent findings on the functions of this secondary metabolite in guiding the plant-microbe interaction and how organic matter affects its functionality in soil.

5.
Curr Res Microb Sci ; 2: 100054, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34841345

RESUMO

Numerous harmful microorganisms and insect pests have the ability to cause plant infections or damage, which is mostly controlled by toxic chemical agents. These chemical compounds and their derivatives exhibit hazardous effects on habitats and human life too. Hence, there's a need to develop novel, more effective and safe bio-control agents. A variety of microbes such as viruses, bacteria, and fungi possess a great potential to fight against phytopathogens and thus can be used as bio-control agents instead of harmful chemical compounds. These naturally occurring microorganisms are applied to the plants in order to control phytopathogens. Moreover, practicing them appropriately for agriculture management can be a way towards a sustainable approach. The MBCAs follow various modes of action and act as elicitors where they induce a signal to activate plant defense mechanisms against a variety of pathogens. MBCAs control phytopathogens and help in disease suppression through the production of enzymes, antimicrobial compounds, antagonist activity involving hyper-parasitism, induced resistance, competitive inhibition, etc. Efficient recognition of pathogens and prompt defensive response are key factors of induced resistance in plants. This resistance phenomenon is pertaining to a complex cascade that involves an increased amount of defensive proteins, salicylic acid (SA), or induction of signaling pathways dependent on plant hormones. Although, there's a dearth of information about the exact mechanism of plant-induced resistance, the studies conducted at the physiological, biochemical and genetic levels. These studies tried to explain a series of plant defensive responses triggered by bio-control agents that may enhance the defensive capacity of plants. Several natural and recombinant microorganisms are commercially available as bio-control agents that mainly include strains of Bacillus, Pseudomonads and Trichoderma. However, the complete understanding of microbial bio-control agents and their interactions at cellular and molecular levels will facilitate the screening of effective and eco-friendly bio-agents, thereby increasing the scope of MBCAs. This article is a comprehensive review that highlights the importance of microbial agents as elicitors in the activation and regulation of plant defense mechanisms in response to a variety of pathogens.

6.
PLoS One ; 16(11): e0257870, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34793479

RESUMO

Nitrate transport in cyanobacteria is mediated by ABC-transporter, which consists of a highly conserved ATP binding cassette (ABC) and a less conserved transmembrane domain (TMD). Under salt stress, recombinant glycinebetaine (GB) not only protected the rate of nitrate transport in transgenic Anabaena PCC 7120, rather stimulated the rate by interacting with the ABC-transporter proteins. In silico analyses revealed that nrtA protein consisted of 427 amino acids, the majority of which were hydrophobic and contained a Tat (twin-arginine translocation) signal profile of 34 amino acids (1-34). The nrtC subunit of 657 amino acids contained two hydrophobic distinct domains; the N-terminal (5-228 amino acids), which was 59% identical to nrtD (the ATP-binding subunit) and the C-terminal (268-591), 28.2% identical to nrtA, suggesting C-terminal as a solute binding domain and N-terminal as ATP binding domain. Subunit nrtD consisted of 277 amino acids and its N-terminal (21-254) was an ATP binding motif. Phylogenetic analysis revealed that nitrate-ABC-transporter proteins are highly conserved among the cyanobacterial species, though variation existed in sequences resulting in several subclades. Nostoc PCC 7120 was very close to Anabaena variabilis ATCC 29413, Anabaena sp. 4-3 and Anabaena sp. CA = ATCC 33047. On the other, Nostoc spp. NIES-3756 and PCC 7524 were often found in the same subclade suggesting more work before referring it to Anabaena PCC 7120 or Nostoc PCC 7120. The molecular interaction of nitrate with nrtA was hydrophilic, while hydrophobic with nrtC and nrtD. GB interaction with nrtACD was hydrophobic and showed higher affinity compared to nitrate.


Assuntos
Anabaena/genética , Betaína/metabolismo , Transportadores de Nitrato/genética , Proteínas Recombinantes/genética , Transportadores de Cassetes de Ligação de ATP , Sequência de Aminoácidos/genética , Anabaena/metabolismo , Transporte Biológico/genética , Cianobactérias/genética , Cianobactérias/metabolismo , Transportadores de Nitrato/metabolismo , Nitratos/metabolismo , Proteínas Recombinantes/metabolismo
7.
Front Chem ; 9: 613343, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113600

RESUMO

Nanotechnology has become a very advanced and popular form of technology with huge potentials. Nanotechnology has been very well explored in the fields of electronics, automobiles, construction, medicine, and cosmetics, but the exploration of nanotecnology's use in agriculture is still limited. Due to climate change, each year around 40% of crops face abiotic and biotic stress; with the global demand for food increasing, nanotechnology is seen as the best method to mitigate challenges in disease management in crops by reducing the use of chemical inputs such as herbicides, pesticides, and fungicides. The use of these toxic chemicals is potentially harmful to humans and the environment. Therefore, using NPs as fungicides/ bactericides or as nanofertilizers, due to their small size and high surface area with high reactivity, reduces the problems in plant disease management. There are several methods that have been used to synthesize NPs, such as physical and chemical methods. Specially, we need ecofriendly and nontoxic methods for the synthesis of NPs. Some biological organisms like plants, algae, yeast, bacteria, actinomycetes, and fungi have emerged as superlative candidates for the biological synthesis of NPs (also considered as green synthesis). Among these biological methods, endophytic microorganisms have been widely used to synthesize NPs with low metallic ions, which opens a new possibility on the edge of biological nanotechnology. In this review, we will have discussed the different methods of synthesis of NPs, such as top-down, bottom-up, and green synthesis (specially including endophytic microorganisms) methods, their mechanisms, different forms of NPs, such as magnesium oxide nanoparticles (MgO-NPs), copper nanoparticles (Cu-NPs), chitosan nanoparticles (CS-NPs), ß-d-glucan nanoparticles (GNPs), and engineered nanoparticles (quantum dots, metalloids, nonmetals, carbon nanomaterials, dendrimers, and liposomes), and their molecular approaches in various aspects. At the molecular level, nanoparticles, such as mesoporous silica nanoparticles (MSN) and RNA-interference molecules, can also be used as molecular tools to carry genetic material during genetic engineering of plants. In plant disease management, NPs can be used as biosensors to diagnose the disease.

8.
Food Sci Technol Int ; 27(8): 746-763, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33423546

RESUMO

Hot air drying kinetics of paddy grains during instant controlled pressure drop (ICPD) assisted parboiling process and its impact on the quality and micro-structural properties of milled rice were investigated. Among five mathematical models, Midilli model showed best fitted outcomes for prediction of adequate drying behavior. For the mapping of moisture ratio (MR) as a function of treatment pressure (TP), decompressed state duration (DD) and drying time (DT), artificial neural network (ANN) and adaptive neuro-fuzzy interface system (ANFIS) were applied. ANFIS model (5-5-5) with Gaussian membership function demonstrated best performance when contrasted with 3-5-1 ANN architecture. Effective diffusivity of the drying process varied from 2.8 × 10-09 to 7.0 × 10-09 m2/s with the increase of TP and DD. In comparison of quality parameters with the variation of TP and DD, positive impacts on head rice yield (HRY), redness (a*) and yellowness (b*) values and negative consequences on cooking time (CT) and brightness (L*) value were observed. The outcomes additionally uncovered that parboiled rice obtained at 0.6 MPa TP, indicated best quality in terms of improved process performance, HRY, CT, color and micro-structural properties.


Assuntos
Oryza , Culinária , Dessecação , Cinética , Redes Neurais de Computação
9.
J Basic Microbiol ; 60(10): 828-861, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32815221

RESUMO

Plant growth-promoting rhizobacteria (PGPR) are diverse groups of plant-associated microorganisms, which can reduce the severity or incidence of disease during antagonism among bacteria and soil-borne pathogens, as well as by influencing a systemic resistance to elicit defense response in host plants. An amalgamation of various strains of PGPR has improved the efficacy by enhancing the systemic resistance opposed to various pathogens affecting the crop. Many PGPR used with seed treatment causes structural improvement of the cell wall and physiological/biochemical changes leading to the synthesis of proteins, peptides, and chemicals occupied in plant defense mechanisms. The major determinants of PGPR-mediated induced systemic resistance (ISR) are lipopolysaccharides, lipopeptides, siderophores, pyocyanin, antibiotics 2,4-diacetylphoroglucinol, the volatile 2,3-butanediol, N-alkylated benzylamine, and iron-regulated compounds. Many PGPR inoculants have been commercialized and these inoculants consequently aid in the improvement of crop growth yield and provide effective reinforcement to the crop from disease, whereas other inoculants are used as biofertilizers for native as well as crops growing at diverse extreme habitat and exhibit multifunctional plant growth-promoting attributes. A number of applications of PGPR formulation are needed to maintain the resistance levels in crop plants. Several microarray-based studies have been done to identify the genes, which are associated with PGPR-induced systemic resistance. Identification of these genes associated with ISR-mediating disease suppression and biochemical changes in the crop plant is one of the essential steps in understanding the disease resistance mechanisms in crops. Therefore, in this review, we discuss the PGPR-mediated innovative methods, focusing on the mode of action of compounds authorized that may be significant in the development contributing to enhance plant growth, disease resistance, and serve as an efficient bioinoculants for sustainable agriculture. The review also highlights current research progress in this field with a special emphasis on challenges, limitations, and their environmental and economic advantages.


Assuntos
Fenômenos Fisiológicos Bacterianos , Resistência à Doença , Fenômenos Fisiológicos Vegetais , Plantas/microbiologia , Inoculantes Agrícolas , Bactérias/classificação , Bactérias/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/imunologia , Produtos Agrícolas/metabolismo , Produtos Agrícolas/microbiologia , Resistência à Doença/genética , Desenvolvimento Vegetal , Plantas/imunologia , Plantas/metabolismo , Solo/química , Microbiologia do Solo
10.
Biochem Biophys Rep ; 22: 100737, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32083191

RESUMO

Continuous increase in global human population and depletion of natural resources of energy posing threat to environment needs, sustainable supply of food and energy. The most ecofriendly approach 'green technology' has been exploited for biofertilizer preparation. Cyanobacteria are the most successful and sustained prokaryotic organism during the course of evolution. They are considered as one of the primitive life forms found on our planet. Cyanobacteria are emerging candidates for efficiently conversion of radiant energy into chemical energy. This biological system produces oxygen as a by-product. Cyanobacterial biomass can also be used for the large scale production of food, energy, biofertilizers, secondary metabolites, cosmetics and medicines. Therefore, cyanobacteria are used in ecofriendly sustainable agricultural practice for production of biomass of very high value and decreasing the level of CO2. This review article describes the methods of mass production of cyanobacterial biofertilizers and their applications in agriculture and industrial level.

11.
Heliyon ; 5(12): e02952, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31872123

RESUMO

BACKGROUND: In response to various environmental stresses, many plant species synthesize L-proline in the cytosol and accumulates in the chloroplasts. L-Proline accumulation in plants is a well-recognized physiological reaction to osmotic stress prompted by salinity, drought and other abiotic stresses. L-Proline plays several protective functions such as osmoprotectant, stabilizing cellular structures, enzymes, and scavenging reactive oxygen species (ROS), and keeps up redox balance in adverse situations. In addition, ample-studied osmoprotective capacity, L-proline has been also ensnared in the regulation of plant improvement, including flowering, pollen, embryo, and leaf enlargement. SCOPE AND CONCLUSIONS: Albeit, ample is now well-known about L-proline metabolism, but certain characteristics of its biological roles are still indistinct. In the present review, we discuss the L-proline accumulation, metabolism, signaling, transport and regulation in the plants. We also discuss the effects of exogenous L-proline during different environmental conditions. L-Proline biosynthesis and catabolism are controlled by several cellular mechanisms, of which we identify only very fewer mechanisms. So, in the future, there is a requirement to identify such types of cellular mechanisms.

12.
Protoplasma ; 255(3): 963-976, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29352355

RESUMO

Soil salinity in nature is generally mixed type; however, most of the studies on salt toxicity are performed with NaCl and little is known about sulfur type of salinity (Na2SO4). Present study discerns the physiologic mechanisms responsible for salt tolerance in salt-adapted Anabaena fertilissima, and responses of directly stressed parent cells to NaCl and NaCl+Na2SO4 mixture. NaCl at 500 mM was lethal to the cyanobacterium, whereas salt-adapted cells grew luxuriantly. Salinity impaired gross photosynthesis, electron transport activities, and respiration in parent cells, but not in the salt-adapted cells, except a marginal increase in PSI activity. Despite higher Na+ concentration in the salt mixture, equimolar NaCl appeared more inhibitive to growth. Sucrose and trehalose content and antioxidant activities were maximal in 250 mM NaCl-treated cells, followed by salt mixture and was almost identical in salt-adapted (exposed to 500 mm NaCl) and control cells, except a marginal increase in ascorbate peroxidase activity and an additional fourth superoxide dismutase isoform. Catalase isoform of 63 kDa was induced only in salt-stressed cells. Salinity increased the uptake of intracellular Na+ and Ca2+ and leakage of K+ in parent cells, while cation level in salt-adapted cells was comparable to control. Though there was differential increase in intracellular Ca2+ under different salt treatments, ratio of Ca2+/Na+ remained the same. It is inferred that stepwise increment in the salt concentration enabled the cyanobacterium to undergo priming effect and acquire robust and efficient defense system involving the least energy.


Assuntos
Anabaena/fisiologia , Tolerância ao Sal/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Sulfatos/farmacologia , Anabaena/efeitos dos fármacos , Anabaena/enzimologia , Anabaena/crescimento & desenvolvimento , Antioxidantes/metabolismo , Vias Biossintéticas/efeitos dos fármacos , Cátions , Respiração Celular/efeitos dos fármacos , Transporte de Elétrons/efeitos dos fármacos , Isoenzimas/metabolismo , Osmose/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Salinidade , Sacarose/metabolismo , Trealose/metabolismo
13.
Sci Rep ; 7(1): 8777, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28821789

RESUMO

Alternaria species produce various sorts of toxic metabolites during their active growth and causes severe diseases in many plants by limiting their productivity. These toxic metabolites incorporate various mycotoxins comprising of dibenzo-α-pyrone and some tetramic acid derivatives. In this study, we have screened out total 48 isolates of Alternaria from different plants belonging to different locations in India, on the basis of their pathogenic nature. Pathogenicity testing of these 48 strains on susceptible tomato variety (CO-3) showed 27.08% of the strains were highly pathogenic, 35.41% moderately pathogenic and 37.5% were less pathogenic. Phylogenetic analysis showed the presence of at least eight evolutionary cluster of the pathogen. Toxins (TeA, AOH and AME) were isolated, purified on the basis of column chromatography and TLC, and further confirmed by the HPLC-UV chromatograms using standards. The final detection of toxins was done by the LC-MS/MS analysis by their mass/charge ratio. The present study develops an approach to classify the toxicogenic effect of each of the individual mycotoxins on tomato plant and focuses their differential susceptibility to develop disease symptoms. This study represents the report of the natural occurrence and distribution of Alternaria toxins in various plants from India.


Assuntos
Alternaria/metabolismo , Micotoxinas/isolamento & purificação , Micotoxinas/farmacologia , Alternaria/classificação , Alternaria/genética , Morte Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , DNA Espaçador Ribossômico , Índia , Micotoxinas/análise , Filogenia , Células Vegetais/efeitos dos fármacos , Sensibilidade e Especificidade , Espectrometria de Massas em Tandem , Toxicologia/métodos
14.
Front Microbiol ; 8: 1451, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28848500

RESUMO

Alternaria is an important fungus to study due to their different life style from saprophytes to endophytes and a very successful fungal pathogen that causes diseases to a number of economically important crops. Alternaria species have been well-characterized for the production of different host-specific toxins (HSTs) and non-host specific toxins (nHSTs) which depend upon their physiological and morphological stages. The pathogenicity of Alternaria species depends on host susceptibility or resistance as well as quantitative production of HSTs and nHSTs. These toxins are chemically low molecular weight secondary metabolites (SMs). The effects of toxins are mainly on different parts of cells like mitochondria, chloroplast, plasma membrane, Golgi complex, nucleus, etc. Alternaria species produce several nHSTs such as brefeldin A, tenuazonic acid, tentoxin, and zinniol. HSTs that act in very low concentrations affect only certain plant varieties or genotype and play a role in determining the host range of specificity of plant pathogens. The commonly known HSTs are AAL-, AK-, AM-, AF-, ACR-, and ACT-toxins which are named by their host specificity and these toxins are classified into different family groups. The HSTs are differentiated on the basis of bio-statistical and other molecular analyses. All these toxins have different mode of action, biochemical reactions and signaling mechanisms to cause diseases. Different species of Alternaria produced toxins which reveal its biochemical and genetic effects on itself as well as on its host cells tissues. The genes responsible for the production of HSTs are found on the conditionally dispensable chromosomes (CDCs) which have been well characterized. Different bio-statistical methods like basic local alignment search tool (BLAST) data analysis used for the annotation of gene prediction, pathogenicity-related genes may provide surprising knowledge in present and future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...