Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 9: 3085, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619166

RESUMO

Staphylococcus aureus is a common Gram-positive bacteria that is a major cause of human morbidity and mortality. The SaeR/S two-component sensory system of S. aureus is important for virulence gene transcription and pathogenesis. However, the influence of SaeR phosphorylation on virulence gene transcription is not clear. To determine the importance of potential SaeR phosphorylation sites for S. aureus virulence, we generated genomic alanine substitutions at conserved aspartic acid residues in the receiver domain of the SaeR response regulator in clinically significant S. aureus pulsed-field gel electrophoresis (PFGE) type USA300. Transcriptional analysis demonstrated a dramatic reduction in the transcript abundance of various toxins, adhesins, and immunomodulatory proteins for SaeR with an aspartic acid to alanine substitution at residue 51. These findings corresponded to a significant decrease in cytotoxicity against human erythrocytes and polymorphonuclear leukocytes, the ability to block human myeloperoxidase activity, and pathogenesis during murine soft-tissue infection. Analysis of SaeR sequences from over 8,000 draft S. aureus genomes revealed that aspartic acid residue 51 is 100% conserved. Collectively, these results demonstrate that aspartic acid residue 51 of SaeR is essential for S. aureus virulence and underscore a conserved target for novel antimicrobial strategies that treat infection caused by this pathogen.

2.
J Infect Dis ; 217(6): 943-952, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29272502

RESUMO

Background: The ability of Staphylococcus aureus to evade killing by human neutrophils significantly contributes to disease progression. In this study, we characterize an influential role for the S. aureus SaeR/S 2-component gene regulatory system in suppressing monocyte production of tumor necrosis factor alpha (TNF-α) to subsequently influence human neutrophil priming. Methods: Using flow cytometry and TNF-α specific enzyme-linked immunosorbent assays we identify the primary cellular source of TNF-α in human blood and in purified peripheral blood mononuclear cells (PBMCs) during interaction with USA300 and an isogenic saeR/S deletion mutant (USA300∆saeR/S). Assays with conditioned media from USA300 and USA300∆saeR/S exposed PBMCs were used to investigate priming on neutrophil bactericidal activity. Results: TNF-α production from monocytes was significantly reduced following challenge with USA300 compared to USA300∆saeR/S. We observed that priming of neutrophils using conditioned medium from peripheral blood mononuclear cells stimulated with USA300∆saeR/S significantly increased neutrophil bactericidal activity against USA300 relative to unprimed neutrophils and neutrophils primed with USA300 conditioned medium. The increased neutrophil bactericidal activity was associated with enhanced reactive oxygen species production that was significantly influenced by elevated TNF-α concentrations. Conclusions: Our findings identify an immune evasion strategy used by S. aureus to impede neutrophil priming and subsequent bactericidal activity.


Assuntos
Proteínas de Bactérias/farmacologia , Staphylococcus aureus Resistente à Meticilina , Monócitos/metabolismo , Neutrófilos/imunologia , Proteínas Quinases/farmacologia , Fatores de Transcrição/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Proteínas de Bactérias/metabolismo , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Staphylococcus aureus Resistente à Meticilina/imunologia , Monócitos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Proteínas Quinases/metabolismo , Fatores de Transcrição/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-28713774

RESUMO

Neutrophils are the most abundant leukocytes in human blood and the first line of defense after bacteria have breached the epithelial barriers. After migration to a site of infection, neutrophils engage and expose invading microorganisms to antimicrobial peptides and proteins, as well as reactive oxygen species, as part of their bactericidal arsenal. Ideally, neutrophils ingest bacteria to prevent damage to surrounding cells and tissues, kill invading microorganisms with antimicrobial mechanisms, undergo programmed cell death to minimize inflammation, and are cleared away by macrophages. Staphylococcus aureus (S. aureus) is a prevalent Gram-positive bacterium that is a common commensal and causes a wide range of diseases from skin infections to endocarditis. Since its discovery, S. aureus has been a formidable neutrophil foe that has challenged the efficacy of this professional assassin. Indeed, proper clearance of S. aureus by neutrophils is essential to positive infection outcome, and S. aureus has developed mechanisms to evade neutrophil killing. Herein, we will review mechanisms used by S. aureus to modulate and evade neutrophil bactericidal mechanisms including priming, activation, chemotaxis, production of reactive oxygen species, and resolution of infection. We will also highlight how S. aureus uses sensory/regulatory systems to tailor production of virulence factors specifically to the triggering signal, e.g., neutrophils and defensins. To conclude, we will provide an overview of therapeutic approaches that may potentially enhance neutrophil antimicrobial functions.


Assuntos
Interações Hospedeiro-Patógeno , Neutrófilos/imunologia , Neutrófilos/microbiologia , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/imunologia , Staphylococcus aureus/fisiologia , Anti-Infecciosos/metabolismo , Aderência Bacteriana/fisiologia , Cápsulas Bacterianas , Proteínas de Bactérias/metabolismo , Quimiotaxia/fisiologia , Cisteína Endopeptidases/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Evasão da Resposta Imune , Imunidade Inata , Imunoglobulinas , Inflamação/metabolismo , Macrófagos/imunologia , Fagocitose/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...