Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685483

RESUMO

Rare Earth Elements (REEs) constitute indispensable raw materials and are employed in a diverse range of devices, including but not limited to smartphones, electric vehicles, and clean energy technologies. While there is an increase in demand for these elements, there is a global supply challenge due to limited availability and geopolitical factors affecting their procurement. A crucial step in manufacturing these devices involves utilizing highly pure REEs, often obtained through complex and nonsustainable processes. These processes are vital in isolating individual REEs from mixtures containing non-REEs and other REEs. There exists an urgent requirement to explore alternative techniques that enable the selective recovery of REEs through more energy-efficient processes. To overcome the limitations mentioned above, we developed a microbead-based technology featuring immobilized lanthanide binding peptides (LBPs) for the selective adsorption of REEs. This technology does not require the utilization of external stimuli but uses gravity-based separation processes to separate the bound REE from the unbound REE. We demonstrate this technology's potential by enriching two relevant REEs (Europium and Terbium). Additionally, we propose a mechanism whereby REEs bind selectively to a particular LBP, leveraging the distinctive physicochemical characteristics of both the REE and the LBP. Moreover, these LBPs exhibit no binding affinity toward other frequently encountered industrial ions. Finally, we demonstrate the recovery of REEs through a change in system conditions and assess the reusability of the microbeads for subsequent adsorption cycles. We anticipate that this approach will address the challenges of REE recovery and demonstrate the potential of biomolecular strategies in advancing sustainable resource management.

2.
Traffic ; 24(10): 434-452, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37392160

RESUMO

Endocytosis is the fundamental uptake process through which cells internalize extracellular materials and species. Neurodegenerative diseases (NDs) are characterized by a progressive accumulation of intrinsically disordered protein species, leading to neuronal death. Misfolding in many proteins leads to various NDs such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS) and other disorders. Despite the significance of disordered protein species in neurodegeneration, their spread between cells and the cellular uptake of extracellular species is not entirely understood. This review discusses the major internalization mechanisms of the different conformer species of these proteins and their endocytic mechanisms. We briefly introduce the broad types of endocytic mechanisms found in cells and then summarize what is known about the endocytosis of monomeric, oligomeric and aggregated conformations of tau, Aß, α-Syn, Huntingtin, Prions, SOD1, TDP-43 and other proteins associated with neurodegeneration. We also highlight the key players involved in internalizing these disordered proteins and the several techniques and approaches to identify their endocytic mechanisms. Finally, we discuss the obstacles involved in studying the endocytosis of these protein species and the need to develop better techniques to elucidate the uptake mechanisms of a particular disordered protein species.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doenças Neurodegenerativas/metabolismo , Agregados Proteicos , Doença de Alzheimer/metabolismo , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo
3.
Nanoscale ; 14(24): 8611-8620, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35687044

RESUMO

Designing programmable biomaterials that could act as extracellular matrices and permit functionalization is a current need for tissue engineering advancement. DNA based hydrogels are gaining significant attention owing to their self-assembling properties, biocompatibility, chemical robustness and low batch to batch variability. The real potential of DNA hydrogels in the biomedical domain remains to be explored. In this work, a DNA hydrogel was coated on a glass surface and coupled to a synthetic IKVAV peptide by a chemical crosslinker. We observe enhanced neuronal differentiation, prolonged neurite length, dynamic movement of microtubules and cytoskeleton, and altered endocytic mechanisms in neuroblastoma-based stem cells for the peptide modified DNA hydrogel compared to the unmodified DNA hydrogel and controls. We anticipate that a peptide-modified DNA hydrogel could emerge as a promising scaffold coating material to develop nerve tissue conduits in the future for application in neuroscience and neuroregeneration.


Assuntos
Células-Tronco Neurais , Neuroblastoma , Diferenciação Celular , DNA/metabolismo , Humanos , Hidrogéis/química , Peptídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...