Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Brain ; 145(2): 607-620, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-34529042

RESUMO

High-throughput DNA sequencing is increasingly employed to diagnose single gene neurological and neuromuscular disorders. Large volumes of data present new challenges in data interpretation and its useful translation into clinical and genetic counselling for families. Even when a plausible gene is identified with confidence, interpretation of the clinical significance and inheritance pattern of variants can be challenging. We report our approach to evaluating variants in the skeletal muscle chloride channel ClC-1 identified in 223 probands with myotonia congenita as an example of these challenges. Sequencing of CLCN1, the gene that encodes CLC-1, is central to the diagnosis of myotonia congenita. However, interpreting the pathogenicity and inheritance pattern of novel variants is notoriously difficult as both dominant and recessive mutations are reported throughout the channel sequence, ClC-1 structure-function is poorly understood and significant intra- and interfamilial variability in phenotype is reported. Heterologous expression systems to study functional consequences of CIC-1 variants are widely reported to aid the assessment of pathogenicity and inheritance pattern. However, heterogeneity of reported analyses does not allow for the systematic correlation of available functional and genetic data. We report the systematic evaluation of 95 CIC-1 variants in 223 probands, the largest reported patient cohort, in which we apply standardized functional analyses and correlate this with clinical assessment and inheritance pattern. Such correlation is important to determine whether functional data improves the accuracy of variant interpretation and likely mode of inheritance. Our data provide an evidence-based approach that functional characterization of ClC-1 variants improves clinical interpretation of their pathogenicity and inheritance pattern, and serve as reference for 34 previously unreported and 28 previously uncharacterized CLCN1 variants. In addition, we identify novel pathogenic mechanisms and find that variants that alter voltage dependence of activation cluster in the first half of the transmembrane domains and variants that yield no currents cluster in the second half of the transmembrane domain. None of the variants in the intracellular domains were associated with dominant functional features or dominant inheritance pattern of myotonia congenita. Our data help provide an initial estimate of the anticipated inheritance pattern based on the location of a novel variant and shows that systematic functional characterization can significantly refine the assessment of risk of an associated inheritance pattern and consequently the clinical and genetic counselling.


Assuntos
Miotonia Congênita , Miotonia , Canais de Cloreto/genética , Humanos , Mutação/genética , Miotonia/genética , Miotonia Congênita/genética , Fenótipo
2.
Hum Genet ; 138(11-12): 1313-1322, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31673819

RESUMO

Pyruvate dehydrogenase complex (PDC) deficiency caused by mutations in the X-linked PDHA1 gene has a broad clinical presentation, and the pattern of X-chromosome inactivation has been proposed as a major factor contributing to its variable expressivity in heterozygous females. Here, we report the first set of monozygotic twin females with PDC deficiency, caused by a novel, de novo heterozygous missense mutation in exon 11 of PDHA1 (NM_000284.3: c.1100A>T). Both twins presented in infancy with a similar clinical phenotype including developmental delay, episodes of hypotonia or encephalopathy, epilepsy, and slowly progressive motor impairment due to pyramidal, extrapyramidal, and cerebellar involvement. However, they exhibited clear differences in disease severity that correlated well with residual PDC activities (approximately 60% and 20% of mean control values, respectively) and levels of immunoreactive E1α subunit in cultured skin fibroblasts. To address whether the observed clinical and biochemical differences could be explained by the pattern of X-chromosome inactivation, we undertook an androgen receptor assay in peripheral blood. In the less severely affected twin, a significant bias in the relative activity of the two X chromosomes with a ratio of approximately 75:25 was detected, while the ratio was close to 50:50 in the other twin. Although it may be difficult to extrapolate these results to other tissues, our observation provides further support to the hypothesis that the pattern of X-chromosome inactivation may influence the phenotypic expression of the same mutation in heterozygous females and broadens the clinical and genetic spectrum of PDC deficiency.


Assuntos
Mutação , Piruvato Desidrogenase (Lipoamida)/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/patologia , Inativação do Cromossomo X , Feminino , Humanos , Masculino , Linhagem , Fenótipo , Prognóstico , Piruvato Desidrogenase (Lipoamida)/deficiência , Gêmeos Monozigóticos
3.
Front Cell Neurosci ; 12: 429, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30532692

RESUMO

Spinocerebellar ataxia type 17 (SCA17) is a rare autosomal dominant neurodegenerative disease caused by a CAG repeat expansion in the TATA-box binding protein gene (TBP). The disease has a varied age at onset and clinical presentation. It is distinct from other SCAs for its association with dementia, psychiatric symptoms, and some patients presenting with chorea. For this reason, it is also called Huntington's disease-like 4 (HDL-4). Here we examine the distribution of SCA17 allele repeat sizes in a United Kingdom-based cohort with ataxia and find that fully penetrant pathogenic alleles are very rare (5 in 1,316 chromosomes; 0.38%). Phenotype-genotype correlation was performed on 30 individuals and the repeat structure of their TBP genes was examined. We found a negative linear correlation between total CAG repeat length and age at disease onset and, unlike SCA1, there was no correlation between the longest contiguous CAG tract and age at disease onset. We were unable to identify any particular phenotypic trait that segregated with particular CAG/CAA repeat tract structures or repeat lengths. One individual within the cohort was homozygous for variable penetrance range SCA17 alleles. This patient had a similar age at onset to heterozygotes with the same repeat sizes, but also presented with a rapidly progressive dementia. A pair of monozygotic twins within the cohort presented 3 years apart with the sibling with the earlier onset having a more severe phenotype with dementia and chorea in addition to the ataxia observed in their twin. This appears to be a case of variable expressivity, possibly influenced by other environmental or epigenetic factors. Finally, there was an asymptomatic father with a severely affected child with an age at onset in their twenties. Despite this, they share the same expanded allele repeat sizes and sequences, which would suggest that there is marked difference in the penetrance of this 51-repeat allele. We therefore propose that the variable penetrance range extend from 48 repeats to incorporate this allele. This study shows that there is variability in the presentation and penetrance of the SCA17 phenotype and highlights the complexity of this disorder.

4.
Front Cell Neurosci ; 12: 200, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30108484

RESUMO

Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant neurodegenerative disorder caused by an expansion of a polyglutamine tract within the ATXN1 gene. Normal alleles have been reported to range from 6 to 35 repeats, intermediate alleles from 36 to 38 repeats and fully penetrant pathogenic alleles have at least 39 repeats. This distribution was based on relatively few samples and the narrow intermediate range makes the accuracy of the repeat sizing crucial for interpreting and reporting diagnostic tests, which can vary between laboratories. Here, we examine the distribution of 6378 SCA1 chromosomes and identify a very late onset SCA1 family with a fully penetrant uninterrupted pathogenic allele containing 38 repeats. This finding supports the theory that polyQ toxicity is related to the increase of the length of the inherited tracts and not as previously hypothesized to the structural transition occurring above a specific threshold. In addition, the threshold of toxicity shifts to a shorter polyQ length with the increase of the lifespan in SCA1. Furthermore, we show that SCA1 intermediate alleles have a different behavior compared to the other polyglutamine disorders as they do not show reduced penetrance when uninterrupted. Therefore, the pathogenic mechanism in SCA1 is distinct from other cytosine-adenine-guanine (CAG) repeat disorders. Accurately sizing repeats is paramount in precision medicine and can be challenging particularly with borderline alleles. We examined plasmids containing cloned CAG repeat tracts alongside a triplet repeat primed polymerase chain reaction (TP PCR) CAG repeat ladder to improve accuracy in repeat sizing by fragment analysis. This method accurately sizes the repeats irrespective of repeat composition or length. We also improved the model for calculating repeat length from fragment analysis sizing by fragment analyzing 100 cloned repeats of known size. Therefore, we recommend these methods for accurately sizing repeat lengths and restriction enzyme digestion to identify interruptions for interpretation of a given allele's pathogenicity.

5.
Lancet ; 391(10129): 1483-1492, 2018 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-29605429

RESUMO

BACKGROUND: Sudden infant death syndrome (SIDS) is the leading cause of post-neonatal infant death in high-income countries. Central respiratory system dysfunction seems to contribute to these deaths. Excitation that drives contraction of skeletal respiratory muscles is controlled by the sodium channel NaV1.4, which is encoded by the gene SCN4A. Variants in NaV1.4 that directly alter skeletal muscle excitability can cause myotonia, periodic paralysis, congenital myopathy, and myasthenic syndrome. SCN4A variants have also been found in infants with life-threatening apnoea and laryngospasm. We therefore hypothesised that rare, functionally disruptive SCN4A variants might be over-represented in infants who died from SIDS. METHODS: We did a case-control study, including two consecutive cohorts that included 278 SIDS cases of European ancestry and 729 ethnically matched controls without a history of cardiovascular, respiratory, or neurological disease. We compared the frequency of rare variants in SCN4A between groups (minor allele frequency <0·00005 in the Exome Aggregation Consortium). We assessed biophysical characterisation of the variant channels using a heterologous expression system. FINDINGS: Four (1·4%) of the 278 infants in the SIDS cohort had a rare functionally disruptive SCN4A variant compared with none (0%) of 729 ethnically matched controls (p=0·0057). INTERPRETATION: Rare SCN4A variants that directly alter NaV1.4 function occur in infants who had died from SIDS. These variants are predicted to significantly alter muscle membrane excitability and compromise respiratory and laryngeal function. These findings indicate that dysfunction of muscle sodium channels is a potentially modifiable risk factor in a subset of infant sudden deaths. FUNDING: UK Medical Research Council, the Wellcome Trust, National Institute for Health Research, the British Heart Foundation, Biotronik, Cardiac Risk in the Young, Higher Education Funding Council for England, Dravet Syndrome UK, the Epilepsy Society, the Eunice Kennedy Shriver National Institute of Child Health & Human Development of the National Institutes of Health, and the Mayo Clinic Windland Smith Rice Comprehensive Sudden Cardiac Death Program.


Assuntos
Músculo Esquelético/fisiopatologia , Mutação , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Morte Súbita do Lactente/genética , Adulto , Estudos de Casos e Controles , Feminino , Frequência do Gene , Variação Genética , Humanos , Lactente , Masculino , Canal de Sódio Disparado por Voltagem NAV1.4/fisiologia , Sequenciamento do Exoma/métodos
6.
Neurol Genet ; 3(3): e149, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28508084

RESUMO

OBJECTIVE: Pathologic ribonuclease H1 (RNase H1) causes aberrant mitochondrial DNA (mtDNA) segregation and is associated with multiple mtDNA deletions. We aimed to determine the prevalence of RNase H1 gene (RNASEH1) mutations among patients with mitochondrial disease and establish clinically meaningful genotype-phenotype correlations. METHODS: RNASEH1 was analyzed in patients with (1) multiple deletions/depletion of muscle mtDNA and (2) mendelian progressive external ophthalmoplegia (PEO) with neuropathologic evidence of mitochondrial dysfunction, but no detectable multiple deletions/depletion of muscle mtDNA. Clinicopathologic and molecular evaluation of the newly identified and previously reported patients harboring RNASEH1 mutations was subsequently undertaken. RESULTS: Pathogenic c.424G>A p.Val142Ile RNASEH1 mutations were detected in 3 pedigrees among the 74 probands screened. Given that all 3 families had Indian ancestry, RNASEH1 genetic analysis was undertaken in 50 additional Indian probands with variable clinical presentations associated with multiple mtDNA deletions, but no further RNASEH1 mutations were confirmed. RNASEH1-related mitochondrial disease was characterized by PEO (100%), cerebellar ataxia (57%), and dysphagia (50%). The ataxia neuropathy spectrum phenotype was observed in 1 patient. Although the c.424G>A p.Val142Ile mutation underpins all reported RNASEH1-related mitochondrial disease, haplotype analysis suggested an independent origin, rather than a founder event, for the variant in our families. CONCLUSIONS: In our cohort, RNASEH1 mutations represent the fourth most common cause of adult mendelian PEO associated with multiple mtDNA deletions, following mutations in POLG, RRM2B, and TWNK. RNASEH1 genetic analysis should also be considered in all patients with POLG-negative ataxia neuropathy spectrum. The pathophysiologic mechanisms by which the c.424G>A p.Val142Ile mutation impairs human RNase H1 warrant further investigation.

8.
Am J Hum Genet ; 98(4): 597-614, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27040688

RESUMO

Abnormal protein aggregation is observed in an expanding number of neurodegenerative diseases. Here, we describe a mechanism for intracellular toxic protein aggregation induced by an unusual mutation event in families affected by axonal neuropathy. These families carry distinct frameshift variants in NEFH (neurofilament heavy), leading to a loss of the terminating codon and translation of the 3' UTR into an extra 40 amino acids. In silico aggregation prediction suggested the terminal 20 residues of the altered NEFH to be amyloidogenic, which we confirmed experimentally by serial deletion analysis. The presence of this amyloidogenic motif fused to NEFH caused prominent and toxic protein aggregates in transfected cells and disrupted motor neurons in zebrafish. We identified a similar aggregation-inducing mechanism in NEFL (neurofilament light) and FUS (fused in sarcoma), in which mutations are known to cause aggregation in Charcot-Marie-Tooth disease and amyotrophic lateral sclerosis, respectively. In summary, we present a protein-aggregation-triggering mechanism that should be taken into consideration during the evaluation of stop-loss variants.


Assuntos
Regiões 3' não Traduzidas/genética , Axônios/patologia , Filamentos Intermediários/genética , Neurônios Motores/patologia , Sequência de Aminoácidos , Esclerose Lateral Amiotrófica/genética , Animais , Linhagem Celular , Doença de Charcot-Marie-Tooth/genética , Mutação da Fase de Leitura , Humanos , Filamentos Intermediários/metabolismo , Camundongos , Dados de Sequência Molecular , Neurônios Motores/metabolismo , Mutação , Linhagem , Peixe-Zebra/genética
9.
Brain ; 139(Pt 2): 380-91, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26912519

RESUMO

Ion channel dysfunction causes a range of neurological disorders by altering transmembrane ion fluxes, neuronal or muscle excitability, and neurotransmitter release. Genetic neuronal channelopathies affecting peripheral axons provide a unique opportunity to examine the impact of dysfunction of a single channel subtype in detail in vivo. Episodic ataxia type 2 is caused by mutations in CACNA1A, which encodes the pore-forming subunit of the neuronal voltage-gated calcium channel Cav2.1. In peripheral motor axons, this channel is highly expressed at the presynaptic neuromuscular junction where it contributes to action potential-evoked neurotransmitter release, but it is not expressed mid-axon or thought to contribute to action potential generation. Eight patients from five families with genetically confirmed episodic ataxia type 2 underwent neurophysiological assessment to determine whether axonal excitability was normal and, if not, whether changes could be explained by Cav2.1 dysfunction. New mutations in the CACNA1A gene were identified in two families. Nerve conduction studies were normal, but increased jitter in single-fibre EMG studies indicated unstable neuromuscular transmission in two patients. Excitability properties of median motor axons were compared with those in 30 age-matched healthy control subjects. All patients had similar excitability abnormalities, including a high electrical threshold and increased responses to hyperpolarizing (P < 0.00007) and depolarizing currents (P < 0.001) in threshold electrotonus. In the recovery cycle, refractoriness (P < 0.0002) and superexcitability (P < 0.006) were increased. Cav2.1 dysfunction in episodic ataxia type 2 thus has unexpected effects on axon excitability, which may reflect an indirect effect of abnormal calcium current fluxes during development.


Assuntos
Ataxia/diagnóstico , Ataxia/genética , Axônios/fisiologia , Canais de Cálcio Tipo N/fisiologia , Neurônios Motores/fisiologia , Nistagmo Patológico/diagnóstico , Nistagmo Patológico/genética , Terminações Pré-Sinápticas/fisiologia , Adulto , Idoso , Ataxia/fisiopatologia , Canais de Cálcio/genética , Eletromiografia/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nistagmo Patológico/fisiopatologia , Adulto Jovem
10.
PLoS One ; 11(1): e0145500, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26735972

RESUMO

Mutations in the nuclear gene POLG (encoding the catalytic subunit of DNA polymerase gamma) are an important cause of mitochondrial disease. The most common POLG mutation, A467T, appears to exhibit considerable phenotypic heterogeneity. The mechanism by which this single genetic defect results in such clinical diversity remains unclear. In this study we evaluate the clinical, neuropathological and mitochondrial genetic features of four unrelated patients with homozygous A467T mutations. One patient presented with the severe and lethal Alpers-Huttenlocher syndrome, which was confirmed on neuropathology, and was found to have a depletion of mitochondrial DNA (mtDNA). Of the remaining three patients, one presented with mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS), one with a phenotype in the Myoclonic Epilepsy, Myopathy and Sensory Ataxia (MEMSA) spectrum and one with Sensory Ataxic Neuropathy, Dysarthria and Ophthalmoplegia (SANDO). All three had secondary accumulation of multiple mtDNA deletions. Complete sequence analysis of muscle mtDNA using the MitoChip resequencing chip in all four cases demonstrated significant variation in mtDNA, including a pathogenic MT-ND5 mutation in one patient. These data highlight the variable and overlapping clinical and neuropathological phenotypes and downstream molecular defects caused by the A467T mutation, which may result from factors such as the mtDNA genetic background, nuclear genetic modifiers and environmental stressors.


Assuntos
DNA Polimerase Dirigida por DNA/genética , Doenças Mitocondriais/genética , Adolescente , Adulto , Encéfalo/patologia , Pré-Escolar , DNA Polimerase gama , DNA Mitocondrial/química , DNA Mitocondrial/genética , Esclerose Cerebral Difusa de Schilder/genética , Esclerose Cerebral Difusa de Schilder/patologia , Feminino , Genótipo , Homozigoto , Humanos , Fígado/patologia , Masculino , Doenças Mitocondriais/patologia , Miopatias Mitocondriais/genética , Miopatias Mitocondriais/patologia , Músculo Esquelético/patologia , Fenótipo , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase em Tempo Real
11.
Eur Radiol ; 26(1): 130-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25994195

RESUMO

OBJECTIVES: Conventional and quantitative MRI was performed in patients with chronic progressive external ophthalmoplegia (CPEO), a common manifestation of mitochondrial disease, to characterise MRI findings in the extra-ocular muscles (EOMs) and investigate whether quantitative MRI provides clinically relevant measures of disease. METHODS: Patients with CPEO due to single mitochondrial DNA deletions were compared with controls. Range of eye movement (ROEM) measurements, peri-orbital 3 T MRI T1-weighted (T1w) and short-tau-inversion-recovery (STIR) images, and T2 relaxation time maps were obtained. Blinded observers graded muscle atrophy and T1w/STIR hyperintensity. Cross-sectional areas and EOM mean T2s were recorded and correlated with clinical parameters. RESULTS: Nine patients and nine healthy controls were examined. Patients had reduced ROEM (patients 13.3°, controls 49.3°, p < 0.001), greater mean atrophy score and increased T1w hyperintensities. EOM mean cross-sectional area was 43 % of controls and mean T2s were prolonged (patients 75.6 ± 7.0 ms, controls 55.2 ± 4.1 ms, p < 0.001). ROEM correlated negatively with EOM T2 (rho = -0.89, p < 0.01), whilst cross-sectional area failed to correlate with any clinical measures. CONCLUSIONS: MRI demonstrates EOM atrophy, characteristic signal changes and prolonged T2 in CPEO. Correlation between elevated EOM T2 and ROEM impairment represents a potential measure of disease severity that warrants further evaluation. KEY POINTS: Chronic progressive external ophthalmoplegia is a common clinical manifestation of mitochondrial disease. • Existing extra-ocular muscle MRI data in CPEO reports variable radiological findings. MRI confirmed EOM atrophy and characteristic signal changes in CPEO. EOM T2 was significantly elevated in CPEO and correlated negatively with ocular movements. EOM T2 represents a potential quantitative measure of disease severity in CPEO.


Assuntos
Imageamento por Ressonância Magnética/métodos , Doenças Mitocondriais/complicações , Músculos Oculomotores/patologia , Oftalmoplegia Externa Progressiva Crônica/diagnóstico , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Oftalmoplegia Externa Progressiva Crônica/etiologia , Oftalmoplegia Externa Progressiva Crônica/genética , Adulto Jovem
12.
J Peripher Nerv Syst ; 20(2): 67-71, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26114802

RESUMO

Mitofusin 2 (MFN2) mutations are the most common cause of axonal Charcot-Marie-Tooth disease (CMT2). The majority are inherited in an autosomal dominant manner but recessive and semi-dominant kindreds have also been described. We previously reported a deletion of exons 7 and 8 resulting in nonsense-mediated decay, segregating with disease when present in trans with another pathogenic MFN2 mutation. Detailed clinical and electrophysiological data on a series of five affected patients from four kindreds and, when available, their parents and relatives were collected. MFN2 Sanger sequencing, multiplex ligation probe amplification, and haplotype analysis were performed. A severe early-onset CMT phenotype was seen in all cases: progressive distal weakness, wasting, and sensory loss from infancy or early childhood. Optic atrophy (four of five) and wheelchair dependency in childhood were common (four of five). All were compound heterozygous for a deletion of exons 7 and 8 in MFN2 with another previously reported pathogenic mutation (Phe216Ser, Thr362Met, and Arg707Trp). Carrier parents and relatives were unaffected (age range: 24-82 years). Haplotype analysis confirmed that the deletion had a common founder in all families.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/fisiopatologia , GTP Fosfo-Hidrolases/genética , Proteínas Mitocondriais/genética , Adulto , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Deleção Cromossômica , Inglaterra , Éxons , Humanos , Pessoa de Meia-Idade , Linhagem , País de Gales , Adulto Jovem
14.
Acta Neuropathol ; 129(5): 715-27, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25716178

RESUMO

The most common cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) is a G4C2-repeat expansion in C9orf72. However, the lower limit for pathological repeats has not been established and expansions with different sizes could have different pathological consequences. One of the implicated disease mechanisms is haploinsufficiency. Previously, we identified expansion-specific hypermethylation at the 5' CpG-island near the G4C2-repeat, but only in a fraction of carriers (up to 36 %). Here, we tested the hypothesis that the G4C2-repeat itself could be the main site of methylation. To evaluate (G4C2)n -methylation, we developed a novel assay, which was validated by an independent methylation-sensitive restriction enzyme assay. Notably, both assays are qualitative but not quantitative. Blood DNA was available for 270 unrelated individuals, including 71 expansion carriers. In addition, we investigated blood DNA from family members of 16 probands, and 38 DNA samples from multiple tissues of 10 expansion carriers. Finally, we tested DNA from different tissues of an ALS patient carrying a somatically unstable 90-repeat. We demonstrated that the G4C2-expansion is generally methylated in unrelated carriers of alleles >50 repeats (97 %), while small (<22 repeats) or intermediate (22-90 repeats) alleles were completely unmethylated. The presence of (G4C2)n -methylation does not separate the C9orf72-phenotypes (ALS vs. ALS/FTLD vs. FTLD), but has the potential to predict large vs. intermediate repeat length. Our results suggest that (G4C2)n -methylation might sometimes spread to the 5'-upstream region, but not vice versa. It is stable over time, since (G4C2)n -methylation was detected in carriers with a wide range of ages (24-74 years). It was identified in both blood and brain tissues for the same individual, implying its potential use as a biomarker. Furthermore, our findings may open up new perspectives for studying disease mechanisms, such as determining whether methylated and unmethylated repeats have the same ability to form a G-quadruplex configuration.


Assuntos
Esclerose Lateral Amiotrófica/genética , Ilhas de CpG , Metilação de DNA , Expansão das Repetições de DNA , Degeneração Lobar Frontotemporal/genética , Proteínas/genética , Idoso , Alelos , Proteína C9orf72 , Feminino , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Mapeamento por Restrição/métodos , Análise de Sequência de DNA
15.
Lancet Neurol ; 14(2): 174-82, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25566998

RESUMO

BACKGROUND: Friedreich's ataxia is a rare autosomal recessive neurodegenerative disorder. Here we report cross-sectional baseline data to establish the biological and clinical characteristics for a prospective, international, European Friedreich's ataxia database registry. METHODS: Within the European Friedreich's Ataxia Consortium for Translational Studies (EFACTS) framework, we assessed a cohort of patients with genetically confirmed Friedreich's ataxia. The primary outcome measure was the Scale for the Assessment and Rating of Ataxia (SARA) and secondary outcome measures were the Inventory of Non-Ataxia Signs (INAS), the performance-based coordination test Spinocerebellar Ataxia Functional Index (SCAFI), the neurocognitive phonemic verbal fluency test, and two quality-of-life measures: the activities of daily living (ADL) part of the Friedreich's Ataxia Rating Scale and EQ-5D. The Friedreich's ataxia cohort was subdivided into three groups: early disease onset (≤14 years), intermediate onset (15-24 years), and late onset (≥25 years), which were compared for clinical characteristics and outcome measures. We used linear regression analysis to estimate the annual decline of clinical outcome measures based on disease duration. This study is registered with ClinicalTrials.gov, number NCT02069509. FINDINGS: We enrolled 592 patients with genetically confirmed Friedreich's ataxia between Sept 15, 2010, and April 30, 2013, at 11 sites in seven European countries. Age of disease onset was inversely correlated with the number of GAA repeats in the frataxin (FXN) gene: every 100 GAA repeats on the smaller repeat allele was associated with a 2·3 year (SE 0·2) earlier onset. Regression analyses showed significant estimated annual worsening of SARA (regression coefficient 0·86 points [SE 0·05], INAS (0·14 points [0·01]), SCAFI Z scores (-0·09 [0·01]), verbal fluency (-0·34 words [0·07]), and ADL (0·64 points [0·04]) during the first 25 years of disease; the regression slope for health-related quality-of-life state from EQ-5D was not significant (-0·33 points [0·18]). For SARA, the predicted annual rate of worsening was significantly higher in early-onset patients (n=354; 1·04 points [0·13]) and intermediate-onset patients (n=137; 1·17 points [0·22]) than in late-onset patients (n=100; 0·56 points [0·10]). INTERPRETATION: The results of this cross-sectional baseline analysis of the EFACTS cohort suggest that earlier disease onset is associated with larger numbers of GAA repeats and more rapid disease progression. The differential estimated progression of ataxia symptoms related to age of onset have implications for the design of clinical trials in Friedreich's ataxia, for which SARA might be the most suitable measure to monitor disease progression. FUNDING: European Commission.


Assuntos
Bases de Dados Factuais , Ataxia de Friedreich/diagnóstico , Ataxia de Friedreich/genética , Pesquisa Translacional Biomédica , Atividades Cotidianas , Adolescente , Adulto , Idoso , Criança , Estudos de Coortes , Estudos Transversais , Europa (Continente)/epidemiologia , Feminino , Ataxia de Friedreich/epidemiologia , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Pesquisa Translacional Biomédica/métodos , Repetições de Trinucleotídeos/genética , Adulto Jovem
16.
Neurobiol Aging ; 36(3): 1600.e5-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25588603

RESUMO

The future of genetic diagnostics will see a move toward massively parallel next-generation sequencing of a patient's DNA. Amyotrophic lateral sclerosis (ALS) is one of the diseases that would benefit from this prospect. Exploring this idea, we designed a screening panel to sequence 25 ALS-linked genes and examined samples from 95 patients with both familial and sporadic ALS. Forty-three rare polymorphisms were detected in this cohort. A third of these have already been reported with respect to ALS, leaving 28 novel variants all open for further investigation. This study highlights the potential benefits of next-generation sequencing as a reliable, cost and time efficient, diagnostic, and research tool for ALS.


Assuntos
Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/tendências , Estudos de Coortes , Sequenciamento de Nucleotídeos em Larga Escala/economia , Humanos , Polimorfismo Genético/genética , Reprodutibilidade dos Testes
18.
Neurobiol Aging ; 36(1): 546.e1-7, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25179228

RESUMO

An expanded hexanucleotide repeat in the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD). Although 0-30 hexanucleotide repeats are present in the general population, expansions >500 repeats are associated with C9ALS/FTD. Large C9ALS/FTD expansions share a common haplotype and whether these expansions derive from a single founder or occur more frequently on a predisposing haplotype is yet to be determined and is relevant to disease pathomechanisms. Furthermore, although cases carrying 50-200 repeats have been described, their role and the pathogenic threshold of the expansions remain to be identified and carry importance for diagnostics and genetic counseling. We present clinical and genetic data from a UK ALS cohort and report the detailed molecular study of an atypical somatically unstable expansion of 90 repeats. Our results across different tissues provide evidence for the pathogenicity of this repeat number by showing they can somatically expand in the central nervous system to the well characterized pathogenic range. Our results support the occurrence of multiple expansion events for C9ALS/FTD.


Assuntos
Esclerose Lateral Amiotrófica/genética , Estudos de Coortes , Expansão das Repetições de DNA/genética , Proteínas/genética , Proteína C9orf72 , Demência Frontotemporal/genética , Humanos , Reino Unido
19.
J Inherit Metab Dis ; 38(3): 445-57, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25352051

RESUMO

BACKGROUND: Single large-scale mitochondrial DNA (mtDNA) deletions (SLSMDs) are amongst the most frequently diagnosed mtDNA disorders in childhood, yet their natural history remains poorly understood. We report the natural history of a large multicentre cohort of such children. METHODS: We reviewed case notes from three different UK centres to determine the clinical course of 34 patients (16 female, 18 male) with childhood-onset mitochondrial disease caused by SLSMDs. Kaplan-Meier analysis was used to compare survival of patients presenting with haematological features (Pearson syndrome) and those with nonhaematological presentations. RESULTS: The most frequent initial presentation was with isolated ptosis (16/34, 47%). Eleven (32%) patients presented with transfusion-dependent anaemia soon after birth and were diagnosed with Pearson syndrome, whilst ten were classified as having Kearns-Sayre syndrome, three as having progressive external ophthalmoplegia (PEO) and seven as having PEO-plus. Three patients did not conform to any specific mitochondrial syndrome. The most frequently affected organ during the disease course was the kidney, with documented tubular or glomerular dysfunction in 17 of 20 (85%) cases who had detailed investigations. SLSMDs were present in blood and/or urine cells in all cases tested, indicating that muscle biopsy is not necessary for diagnosis in the paediatric age range. Kaplan-Meier survival analysis revealed significantly worse mortality in patients with Pearson syndrome compared with the rest of the cohort. CONCLUSIONS: Mitochondrial disease caused by SLSMDs is clinically heterogeneous, and not all cases conform to a classical mitochondrial syndrome. Multisystem disease is the norm, with anaemia, renal impairment and endocrine disturbance being the most frequent extraneurological features. SLSMDs should be considered in the differential diagnosis of all children presenting with ptosis.


Assuntos
Acil-CoA Desidrogenase de Cadeia Longa/deficiência , Blefaroptose/genética , DNA Mitocondrial/genética , Síndrome de Kearns-Sayre/genética , Erros Inatos do Metabolismo Lipídico/genética , Doenças Mitocondriais/genética , Músculo Esquelético/patologia , Doenças Musculares/genética , Deleção de Sequência/genética , Acil-CoA Desidrogenase de Cadeia Longa/genética , Adolescente , Adulto , Criança , Pré-Escolar , Estudos de Coortes , Síndrome Congênita de Insuficiência da Medula Óssea , Feminino , Humanos , Lactente , Recém-Nascido , Estimativa de Kaplan-Meier , Masculino , Adulto Jovem
20.
Neurobiol Aging ; 36(2): 1221.e1-6, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25308964

RESUMO

A GGGGCC repeat expansion in the C9orf72 gene was recently identified as a major cause of familial and sporadic amyotrophic lateral sclerosis and frontotemporal dementia. There is suggestion that these expansions may be a rare cause of parkinsonian disorders such as progressive supranuclear palsy (PSP), multiple system atrophy (MSA), and corticobasal degeneration (CBD). Screening the C9orf72 gene in 37 patients with features of corticobasal syndrome (CBS) detected an expansion in 3 patients, confirmed by Southern blotting. In a series of 22 patients with clinically diagnosed PSP, we found 1 patient with an intermediate repeat length. We also screened for the C9orf72 expansion in a large series of neuropathologically confirmed samples with MSA (n = 96), PSP (n = 177), and CBD (n = 18). Patients were found with no more than 22 GGGGCC repeats. Although these results still need to be confirmed in a larger cohort of CBS and/or CBD patients, these data suggest that in the presence of a family history and/or motor neuron disease features, patients with CBS or clinical PSP should be screened for the C9orf72 repeat expansion. In addition, we confirm that the C9orf72 expansions are not associated with pathologically confirmed MSA, PSP, or CBD in a large series of cases.


Assuntos
Expansão das Repetições de DNA , Transtornos Parkinsonianos/genética , Proteínas/genética , Adulto , Idoso , Gânglios da Base/patologia , Doenças dos Gânglios da Base/genética , Proteína C9orf72 , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Atrofia de Múltiplos Sistemas/genética , Doenças Neurodegenerativas/genética , Paralisia Supranuclear Progressiva/genética , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...