Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38895484

RESUMO

During postnatal life, the adipocyte-derived hormone leptin is required for proper targeting of neural inputs to the paraventricular nucleus of the hypothalamus (PVH) and impacts the activity of neurons containing agouti-related peptide (AgRP) in the arcuate nucleus of the hypothalamus. Activity-dependent developmental mechanisms are known to play a defining role during postnatal organization of neural circuits, but whether leptin-mediated postnatal neuronal activity specifies neural projections to the PVH or impacts downstream connectivity is largely unexplored. Here, we blocked neuronal activity of AgRP neurons during a discrete postnatal period and evaluated development of AgRP inputs to defined regions in the PVH, as well as descending projections from PVH oxytocin neurons to the dorsal vagal complex (DVC) and assessed their dependence on leptin or postnatal AgRP neuronal activity. In leptin-deficient mice, AgRP inputs to PVH neurons were significantly reduced, as well as oxytocin-specific neuronal targeting by AgRP. Moreover, downstream oxytocin projections from the PVH to the DVC were also impaired, despite the lack of leptin receptors found on PVH oxytocin neurons. Blocking AgRP neuron activity specifically during early postnatal life reduced the density of AgRP inputs to the PVH, as well as the density of projections from PVH oxytocin neurons to the DVC, and these innervation deficits were associated with dysregulated autonomic function. These findings suggest that postnatal targeting of descending PVH oxytocin projections to the DVC requires leptin-mediated AgRP neuronal activity, and represents a novel activity-dependent mechanism for hypothalamic specification of metabolic circuitry, with consequences for autonomic regulation. Significance statement: Hypothalamic neural circuits maintain homeostasis by coordinating endocrine signals with autonomic responses and behavioral outputs to ensure that physiological responses remain in tune with environmental demands. The paraventricular nucleus of the hypothalamus (PVH) plays a central role in metabolic regulation, and the architecture of its neural inputs and axonal projections is a defining feature of how it receives and conveys neuroendocrine information. In adults, leptin regulates multiple aspects of metabolic physiology, but it also functions during development to direct formation of circuits controlling homeostatic functions. Here we demonstrate that leptin acts to specify the input-output architecture of PVH circuits through an activity-dependent, transsynaptic mechanism, which represents a novel means of sculpting neuroendocrine circuitry, with lasting effects on how the brain controls energy balance.

2.
bioRxiv ; 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36824760

RESUMO

A limiting factor in the regenerative capacity of the adult brain is the abundance and proliferative ability of neural stem cells (NSCs). Adult NSCs are derived from a subpopulation of embryonic NSCs that temporarily enter quiescence during mid-gestation and remain quiescent until postnatal reactivation. Here we present evidence that the mechanistic/mammalian target of rapamycin (mTOR) pathway regulates quiescence entry in embryonic NSCs of the developing forebrain. Throughout embryogenesis, two downstream effectors of mTOR, p-4EBP1/2 T37/46 and p-S6 S240/244, were mutually exclusive in NSCs, rarely occurring in the same cell. While 4EBP1/2 was phosphorylated in stem cells undergoing mitosis at the ventricular surface, S6 was phosphorylated in more differentiated cells migrating away from the ventricle. Phosphorylation of 4EBP1/2, but not S6, was responsive to quiescence induction in cultured embryonic NSCs. Further, inhibition of p-4EBP1/2, but not p-S6, was sufficient to induce quiescence. Collectively, this work offers new insight into the regulation of quiescence entry in embryonic NSCs and, thereby, correct patterning of the adult brain. These data suggest unique biological functions of specific posttranslational modifications and indicate that the preferential inhibition of such modifications may be a useful therapeutic approach in neurodevelopmental diseases where NSC numbers, proliferation, and differentiation are altered.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...