Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Microbiol ; 204(9): 590, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36053368

RESUMO

Globally, new classes of synthetic and natural antibiotics and antivirulents have continuously been validated for their potential broad-spectrum antagonistic activity with the aim of identifying an effective active molecule to prevent the spread of infectious agents in both food industry and medical field. In view of this, present study is aimed at evaluating the rapid killing efficacy of bioactive molecules Carvacrol (C) and Nerol (N) through British Standard European Norm 1276: phase2/step1 (EN1276) protocol. Active molecules C and N showed broad-spectrum antimicrobial activity against the test strains Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Enterococcus hirae at concentration range of 78.125, 625, 156.25 and 312.5 µg/mL, respectively, for C, and 625 µg/mL for N. Whereas, combinatorial approach showed efficient activity with four times reduced concentration of C and N at 78.125 and 156.25 µg/mL, respectively, against test strains. Further, EN1276 results proved the rapid killing efficacy of test strains in 1 min of contact time with significant (> 5 log) growth reduction at 100X concentration of actives. SEM analysis and reduced concentration of protease, lipids and carbohydrate contents of treated group biofilm components ascertained preformed biofilm disruption potential of C + N on polystyrene and nail surfaces. C + N at synergistic concentration exhibited no adverse effect on HaCaT cells at 78.125 µg/mL (C) + 156.25 µg/mL (N). Taken together, based on the observed experimental results, present study evidence the antiseptic/disinfectant ability of C + N and suggest that the combination can preferentially be used in foam-based hand wash formulations.


Assuntos
Anti-Infecciosos Locais , Infecção Hospitalar , Monoterpenos Acíclicos , Antibacterianos/farmacologia , Anti-Infecciosos Locais/farmacologia , Infecção Hospitalar/prevenção & controle , Cimenos , Escherichia coli , Humanos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa , Staphylococcus aureus
2.
Int J Mol Sci ; 22(23)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34884496

RESUMO

Seaweed extracts are considered effective therapeutic alternatives to synthetic anticancer, antioxidant, and antimicrobial agents, owing to their availability, low cost, greater efficacy, eco-friendliness, and non-toxic nature. Since the bioactive constituents of seaweed, in particular, phytosterols, possess plenty of medicinal benefits over other conventional pharmaceutical agents, they have been extensively evaluated for many years. Fortunately, recent advances in phytosterol-based research have begun to unravel the evidence concerning these important processes and to endow the field with the understanding and identification of the potential contributions of seaweed-steroidal molecules that can be used as chemotherapeutic drugs. Despite the myriad of research interests in phytosterols, there is an immense need to fill the void with an up-to-date literature survey elucidating their biosynthesis, pharmacological effects, and other biomedical applications. Hence, in the present review, we summarize studies dealing with several types of seaweed to provide a comprehensive overview of the structural determination of several phytosterol molecules, their properties, biosynthetic pathways, and mechanisms of action, along with their health benefits, which could significantly contribute to the development of novel drugs and functional foods.


Assuntos
Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Alimento Funcional , Fitosteróis/farmacologia , Alga Marinha/química , Animais , Humanos
3.
Microb Pathog ; 158: 104990, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34048889

RESUMO

Polymicrobial biofilms involving fungal-bacterial interactions are stated to modulate host immune response and exhibit enhanced antibiotic resistance. In this milieu, clinically important opportunistic pathogens Candida albicans and Staphylococcus epidermidis associate synergistically and instigate implant and blood stream infections. Impediment of virulence traits that support successive pathogenic lifestyle and inter-kingdom interactions without altering the microbial growth represents an attractive alternate strategy. To accomplish this objective, 5-hydroxymethyl-2-furaldehyde (5HM2F), a reported antibiofilm agent against C. albicans, was considered for this study. 5HM2F significantly repressed the biofilm formation of S. epidermidis and mixed-species at 300 µg/mL and 400 µg/mL, respectively without modulating the growth. Microscopic analyses and phenotypic assays explicated the competency of 5HM2F to impede biofilm formation, hyphal growth, initial attachment, intercellular adhesion, and fungal-bacterial interaction. Further, 5HM2F greatly reduced the secreted hydrolases production. Reduced content of biofilm matrix components upon 5HM2F treatment was believed to be the underlying reason for enhanced antibiotic and/antifungal susceptibility. Additionally, qPCR analysis correlated well with in vitro bioassays wherein, 5HM2F was identified to repress the expression of important genes associated with hyphal morphogenesis, adhesion, biofilm formation and virulence in both mono-species and mixed-species. Reduced virulence and colonization of mono-species and mixed-species in 5HM2F treated Caenorhabditis elegans substantiated the antibiofilm and antivirulence potential of 5HM2F. Overall, this study proposes 5HM2F as a potent therapeutic candidate against single and mixed-species biofilm infections of C. albicans and S. epidermidis.


Assuntos
Candida albicans , Staphylococcus epidermidis , Biofilmes , Técnicas de Cocultura , Furaldeído/análogos & derivados , Virulência
4.
Colloids Surf B Biointerfaces ; 194: 111207, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32590245

RESUMO

Proteus mirabilis is one of the important etiologic agents of urinary tract infections (UTI), which complicates the long-term urinary catheterization process in clinical settings. Owing to its crystalline biofilm forming ability and flagellar motility, elimination of P. mirabilis from urinary system becomes very difficult. Thus, the present study is focused to prepare antibiofilm-impregnated Silicone Foley Catheter (SFC) to prevent P. mirabilis instigated UTIs. Through solvent swelling method, the antibiofilm compounds such as linalool (LIN) and 2-hydroxy-4-methoxy benzaldehyde (HMB) were successfully infused into SFCs. Surface topography was studied using AFM analysis, which unveiled the unmodified surface roughness of normal and antibiofilm-impregnated SFCs. In addition, UV-spectrometric and FT-IR analyses revealed good impregnation efficacy and prolonged stability of antibiofilm compounds. Further, in vitro biofilm biomass quantification assay exhibited a maximum of 87 % and 84 % crystalline biofilm inhibition in LIN (350 µg/cm3) and HMB (120 µg/cm3) impregnated SFCs, respectively against P. mirabilis in artificial urine medium. Also, the LIN & HMB-impregnated SFCs demonstrated long-term crystalline biofilm inhibitory activity for more than 30 days, which is ascribed to the sustained release of the compounds. Furthermore, the results of swarming motility analysis revealed the efficacy of antibiofilm-impregnated catheters to mitigate the migration of pathogens over them. Thus, antibiofilm-impregnated catheter is proposed to act as a suitable strategy for reducing P. mirabilis infections and associated complications in long-term urinary catheter users.


Assuntos
Proteus mirabilis , Cateteres Urinários , Biofilmes , Cateteres de Demora , Espectroscopia de Infravermelho com Transformada de Fourier , Cateterismo Urinário
5.
Biofouling ; 36(10): 1256-1271, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33435734

RESUMO

Candida albicans and Staphylococcus epidermidis are important opportunistic human pathogens, which form mixed-species biofilms and cause recalcitrant device associated infections in clinical settings. Further to many reports suggesting the therapeutic potential of plant-derived monoterpenoids, this study investigated the interaction of the monoterpenoids carvacrol (C) and thymol (T) against mono- and mixed-species growth of C. albicans and S. epidermidis. C and T exhibited synergistic antimicrobial activity. The time-kill study and post-antimicrobial effect results revealed the effective microbicidal action of the C + T combination. Filamentation, surface coating assays and live-dead staining of biofilms determined the anti-hyphal, antiadhesion, and anti-biofilm activities of the C + T combination, respectively. Notably, this combination killed highly tolerant persister cells of mono-species and mixed-species biofilms and demonstrated less risk of resistance development. The collective data suggest that the C + T combination could act as an effective therapeutic agent against biofilm associated mono-species and mixed-species infections of C. albicans and S. epidermidis.


Assuntos
Biofilmes , Candida albicans , Staphylococcus epidermidis , Anti-Infecciosos , Cimenos , Humanos , Timol/farmacologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-31681633

RESUMO

Staphylococcus epidermidis is an opportunistic human pathogen, which is involved in numerous nosocomial and implant associated infections. Biofilm formation is one of the prime virulence factors of S. epidermidis that supports its colonization on biotic and abiotic surfaces. The global dissemination of three lineages of S. epidermidis superbugs highlights its clinical significance and the imperative need to combat its pathogenicity. Thus, in the current study, the antibiofilm activity of umbelliferone (UMB), a natural product of the coumarin family, was assessed against methicillin-resistant S. epidermidis (MRSE). UMB exhibited significant antibiofilm activity (83%) at 500 µg/ml concentration without growth alteration. Microscopic analysis corroborated the antibiofilm potential of UMB and unveiled its potential to impair intercellular adhesion, which was reflected in auto-aggregation and solid phase adherence assays. Furthermore, real time PCR analysis revealed the reduced expression of adhesion encoding genes (icaD, atlE, aap, bhp, ebh, sdrG, and sdrF). Down regulation of agrA and reduced production of secreted hydrolases upon UMB treatment were speculated to hinder invasive lifestyle of MRSE. Additionally, UMB hindered slime synthesis and biofilm matrix components, which were believed to augment antibiotic susceptibility. In vivo assays using Caenorhabditis elegans divulged the non-toxic nature of UMB and validated the antibiofilm, antivirulence, and antiadherence properties of UMB observed in in vitro assays. Thus, UMB impairs MRSE biofilm by turning down the initial attachment and intercellular adhesion. Altogether, the obtained results suggest the potent antibiofilm activity of UMB and the feasibility of using it in clinical settings for combating S. epidermidis infections.


Assuntos
Aderência Bacteriana/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/fisiologia , Infecções Estafilocócicas/microbiologia , Umbeliferonas/farmacologia , Antibacterianos/farmacologia , Metabolismo Energético/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Virulência/efeitos dos fármacos , Fatores de Virulência
7.
Microbiol Res ; 207: 19-32, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29458854

RESUMO

Candida albicans is considered as the primary etiologic agent of candidiasis, a very common fungal infection in human. The yeast to hyphal transition and ability to form hypoxic biofilm on medical devices is well allied with virulence and antifungal resistance of C. albicans. Antagonistic agents that inhibit biofilm formation and alter susceptibility of C. albicans to conventional antifungals is of profound need. The present study explores the antibiofilm efficacy of Bacillus subtilis, a marine bacterial isolate from Palk Bay against C. albicans. Mass spectrometric analysis of ethyl acetate extract of B. subtilis unveiled 5-hydroxymethyl-2-furaldehyde (5HM2F) as one of its major components. 5HM2F demonstrated concentration dependent biofilm inhibition, which was also corroborated through microscopic analysis. Furthermore, 5HM2F was effective in inhibiting other virulence factors of C. albicans such as morphological transition and secreted hydrolases production. Fourier transform infrared spectroscopic analysis showed alteration in amide bond region. The reduction in ergosterol content and increased antifungal susceptibility was well allied with real time PCR result, which showed down regulation of genes involved in drug resistance mechanisms. In vivo study using Caenorhabditis elegans also substantiated the antivirulence efficacy of 5HM2F at in vivo condition. Thus, the present study reports the therapeutic potential of 5HM2F against C. albicans infections.


Assuntos
Antifúngicos/farmacologia , Bacillus subtilis/metabolismo , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Candida albicans/patogenicidade , Furaldeído/análogos & derivados , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/patogenicidade , Clotrimazol/farmacologia , Sinergismo Farmacológico , Ergosterol/metabolismo , Furaldeído/farmacologia , Hifas/crescimento & desenvolvimento , Cetoconazol/farmacologia , Miconazol/farmacologia , Virulência/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...