Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Faraday Discuss ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836643

RESUMO

The effective management of plastic waste has become a global imperative, given our reliance on a linear model in which plastics are manufactured, used once, and then discarded. This has led to the pervasive accumulation of plastic debris in landfills and environmental contamination. Recognizing this issue, numerous initiatives are underway to address the environmental repercussions associated with plastic disposal. In this study, we investigate the possible molecular mechanism of polyurethane esterase A (PueA), which has been previously identified as responsible for the degradation of a polyester polyurethane (PU) sample in Pseudomonas chlororaphis, as an effort to develop enzymatic biodegradation solutions. After generating the unsolved 3D structure of the protein by AlphaFold2 from its known genome, the enzymatic hydrolysis of the same model PU compound previously used in experiments has been explored employing QM/MM molecular dynamics simulations. This required a preliminary analysis of the 3D structure of the apo-enzyme, identifying the putative active site, and the search for the optimal protein-substrate binding site. Finally, the resulting free energy landscape indicates that wild-type PueA can degrade PU chains, although with low-level activity. The reaction takes place by a characteristic four-step path of the serine hydrolases, involving an acylation followed by a diacylation step. Energetics and structural analysis of the evolution of the active site along the reaction suggests that PueA can be considered a promising protein scaffold for further development to achieve efficient biodegradation of PU.

2.
Angew Chem Int Ed Engl ; 63(22): e202403098, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38545954

RESUMO

Secondary amines, due to their reactivity, can transform protein templates into catalytically active entities, accelerating the development of artificial enzymes. However, existing methods, predominantly reliant on modified ligands or N-terminal prolines, impose significant limitations on template selection. In this study, genetic code expansion was used to break this boundary, enabling secondary amines to be incorporated into alternative proteins and positions of choice. Pyrrolysine analogues carrying different secondary amines could be incorporated into superfolder green fluorescent protein (sfGFP), multidrug-binding LmrR and nucleotide-binding dihydrofolate reductase (DHFR). Notably, the analogue containing a D-proline moiety demonstrated both proteolytic stability and catalytic activity, conferring LmrR and DHFR with the desired transfer hydrogenation activity. While the LmrR variants were confined to the biomimetic 1-benzyl-1,4-dihydronicotinamide (BNAH) as the hydride source, the optimal DHFR variant favorably used the pro-R hydride from NADPH for stereoselective reactions (e.r. up to 92 : 8), highlighting that a switch of protein template could broaden the nucleophile option for catalysis. Owing to the cofactor compatibility, the DHFR-based secondary amine catalysis could be integrated into an enzymatic recycling scheme. This established method shows substantial potential in enzyme design, applicable from studies on enzyme evolution to the development of new biocatalysts.


Assuntos
Biocatálise , Código Genético , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Engenharia de Proteínas , Lisina/análogos & derivados , Lisina/química , Lisina/metabolismo , Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo
3.
J Chem Theory Comput ; 20(5): 1783-1795, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38410913

RESUMO

Enzyme design faces challenges related to the implementation of the basic principles that govern the catalytic activity in natural enzymes. In this work, we revisit basic electrostatic concepts that have been shown to explain the origin of enzymatic efficiency like preorganization and reorganization. Using magnitudes such as the electrostatic potential and the electric field generated by the protein, we explain how these concepts work in different enzymes and how they can be used to rationalize the consequences of point mutations. We also discuss examples of protein design in which electrostatic effects have been implemented. For the near future, molecular simulations, coupled with the use of machine learning methods, can be used to implement electrostatics as a guiding principle for enzyme designs.


Assuntos
Proteínas , Eletricidade Estática , Domínio Catalítico
4.
Adv Sci (Weinh) ; 11(16): e2308956, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38348541

RESUMO

Amino acids are indispensable compounds in the body, performing several biological processes that enable proper functioning. In this work, it is demonstrated that a single amino acid, taurine, is also able to promote the ring-opening polymerization (ROP) of several cyclic monomers under industrially relevant conditions. It is shown that the unique zwitterionic structure of taurine, where the negatively charged sulfonic acid group and the protonated amine group are separated by two methylene groups, not only provides high thermal stability but also leads to a dual activation mechanism, which is corroborated by quantum mechanical calculations. This unique mechanism allows for the synthesis of polylactide of up to 50 kDa in bulk at 180 °C with good end-group fidelity using a highly abundant catalyst. Furthermore, cytotoxicity tests confirm that PLLA synthesized with taurine is non-toxic. Moreover, it is demonstrated that the presence of taurine does not have any detrimental effect on the thermal stability of polylactide, and therefore polymers can be used directly without any post-polymerization purification. It is believed that the demonstration that a simple structure composed of a single amino acid can promote polymerization can bring a paradigm shift in the preparation of polymers.

5.
Commun Chem ; 7(1): 15, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238420

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic continues to represent a global public health issue. The viral main protease (Mpro) represents one of the most attractive targets for the development of antiviral drugs. Herein we report peptidyl nitroalkenes exhibiting enzyme inhibitory activity against Mpro (Ki: 1-10 µM) good anti-SARS-CoV-2 infection activity in the low micromolar range (EC50: 1-12 µM) without significant toxicity. Additional kinetic studies of compounds FGA145, FGA146 and FGA147 show that all three compounds inhibit cathepsin L, denoting a possible multitarget effect of these compounds in the antiviral activity. Structural analysis shows the binding mode of FGA146 and FGA147 to the active site of the protein. Furthermore, our results illustrate that peptidyl nitroalkenes are effective covalent reversible inhibitors of the Mpro and cathepsin L, and that inhibitors FGA145, FGA146 and FGA147 prevent infection against SARS-CoV-2.

6.
ACS Catal ; 13(20): 13354-13368, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37881790

RESUMO

Cathepsin L (CatL) is a lysosomal cysteine protease whose activity has been related to several human pathologies. However, although preclinical trials using CatL inhibitors were promising, clinical trials have been unsuccessful up to now. We are presenting a study of two designed dipeptidyl keto Michael acceptor potential inhibitors of CatL with either a keto vinyl ester or a keto vinyl sulfone (KVS) warhead. The compounds were synthesized and experimentally assayed in vitro, and their inhibition molecular mechanism was explored based on molecular dynamics simulations at the density functional theory/molecular mechanics level. The results confirm that both compounds inhibit CatL in the nanomolar range and show a time-dependent inhibition. Interestingly, despite both presenting almost equivalent equilibrium constants for the reversible formation of the noncovalent enzyme/inhibitor complex, differences are observed in the chemical step corresponding to the enzyme-inhibitor covalent bond formation, results that are mirrored by the computer simulations. Theoretically determined kinetic and thermodynamic results, which are in very good agreement with the experiments, afford a detailed explanation of the relevance of the different structural features of both compounds having a significant impact on enzyme inhibition. The unprecedented binding interactions of both inhibitors in the P1' site of CatL represent valuable information for the design of inhibitors. In particular, the peptidyl KVS can be used as a starting lead compound in the development of drugs with medical applications for the treatment of cancerous pathologies since sulfone warheads have previously shown promising cell stability compared to other functions such as carboxylic esters. Future improvements can be guided by the atomistic description of the enzyme-inhibitor interactions established along the inhibition reaction derived from computer simulations.

7.
RSC Med Chem ; 14(9): 1767-1777, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37731692

RESUMO

The interaction of the inducible co-stimulator (ICOS) with its ligand (ICOSL) plays key roles in T-cell differentiation and activation of T-cell to B-cell functions. The ICOS/ICOSL pathway is a validated target for T-cell lymphomas induced by the proliferation of T-follicular helper (Tfh) cells. Moreover, the inhibition of ICOS/ICOSL interaction can decrease the enhancement of immunosuppressive regulatory T cells (Tregs) in both hematologic malignancies and solid tumors. However, targeting ICOS/ICOSL interaction is currently restricted to monoclonal antibodies (mAbs) and there are no small molecules in existence that can block ICOS/ICOSL. To fill this gap, we report herein the first time-resolved fluorescence resonance energy transfer (TR-FRET) assay to evaluate the ability of small molecules to inhibit ICOS/ICOSL interaction. Implementation of the developed TR-FRET assay in high-throughput screening (HTS) of a focused chemical library resulted in the identification of AG-120 as a first-in-class inhibitor of ICOS/ICOSL interaction. We further employed docking studies and molecular dynamics (MD) simulations to identify the plausible mechanism of blocking ICOS/ICOSL complex formation by AG-120. Using the structure-activity relationship (SAR) by catalog approach, we identified AG-120-X with an IC50 value of 4.68 ± 0.47 µM in the ICOS/ICOSL TR-FRET assay. Remarkably, AG-120-X revealed a dose-dependent ability to block ICOS/ICOSL interaction in a bioluminescent cellular assay based on co-culturing Jurkat T cells expressing ICOS and CHO-K1 cells expressing ICOSL. This work will pave the way for future drug discovery efforts aiming at the development of small molecule inhibitors of ICOS/ICOSL interaction as potential therapeutics for cancer as well as other diseases.

8.
Nat Commun ; 14(1): 3556, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37321996

RESUMO

Biocatalysis is a key technology enabling plastic recycling. However, despite advances done in the development of plastic-degrading enzymes, the molecular mechanisms that govern their catalytic performance are poorly understood, hampering the engineering of more efficient enzyme-based technologies. In this work, we study the hydrolysis of PET-derived diesters and PET trimers catalyzed by the highly promiscuous lipase B from Candida antarctica (CALB) through QM/MM molecular dynamics simulations supported by experimental Michaelis-Menten kinetics. The computational studies reveal the role of the pH on the CALB regioselectivity toward the hydrolysis of bis-(hydroxyethyl) terephthalate (BHET). We exploit this insight to perform a pH-controlled biotransformation that selectively hydrolyzes BHET to either its corresponding diacid or monoesters using both soluble and immobilized CALB. The discoveries presented here can be exploited for the valorization of BHET resulting from the organocatalytic depolymerization of PET.


Assuntos
Enzimas Imobilizadas , Lipase , Lipase/metabolismo , Hidrólise , Biocatálise , Enzimas Imobilizadas/química , Plásticos/metabolismo , Concentração de Íons de Hidrogênio , Proteínas Fúngicas/metabolismo
9.
Angew Chem Int Ed Engl ; 62(18): e202301914, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36861821

RESUMO

Mechanically interlocked molecules (MIMs) have gained increasing interest during the last decades, not only because of their aesthetic appeal, but also because their unique properties have allowed them to find applications in nanotechnology, catalysis, chemosensing and biomedicine. Herein we describe how a pyrene molecule with four octynyl substituents can be easily encapsulated within the cavity of a tetragold(I) rectangle-like metallobox, by template formation of the metallo-assembly in the presence of the guest. The resulting assembly behaves as a mechanically interlocked molecule (MIM), in which the four long limbs of the guest protrude from the entrances of the metallobox, thus locking the guest inside the cavity of the metallobox. The new assembly resembles a metallo-suit[4]ane, given the number of protruding long limbs and the presence of the metal atoms in the host molecule. However, unlike normal MIMs, this molecule can release the tetra-substituted pyrene guest by the addition of coronene, which can smoothly replace the guest in the cavity of the metallobox. Combined experimental and computational studies allowed the role of the coronene molecule in facilitating the release of the tetrasubstituted pyrene guest to be explained, through a process that we named "shoehorning", as the coronene compresses the flexible limbs of the guest so that it can reduce its size to slide in and out the metallobox.

10.
Angew Chem Int Ed Engl ; 62(9): e202217372, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36583658

RESUMO

The hydroxylation of fatty acids is an appealing reaction in synthetic chemistry, although the lack of selective catalysts hampers its industrial implementation. In this study, we have engineered a highly regioselective fungal peroxygenase for the ω-1 hydroxylation of fatty acids with quenched stepwise over-oxidation. One single mutation near the Phe catalytic tripod narrowed the heme cavity, promoting a dramatic shift toward subterminal hydroxylation with a drop in the over-oxidation activity. While crystallographic soaking experiments and molecular dynamic simulations shed light on this unique oxidation pattern, the selective biocatalyst was produced by Pichia pastoris at 0.4 g L-1 in a fed-batch bioreactor and used in the preparative synthesis of 1.4 g of (ω-1)-hydroxytetradecanoic acid with 95 % regioselectivity and 83 % ee for the S enantiomer.


Assuntos
Ácidos Graxos , Oxigenases de Função Mista , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Ácidos Graxos/química , Oxirredução , Hidroxilação
11.
Chem Sci ; 13(17): 4779-4787, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35655887

RESUMO

While there has been emerging interest in designing new enzymes to solve practical challenges, computer-based options to redesign catalytically active proteins are rather limited. Here, a rational QM/MM molecular dynamics strategy based on combining the best electrostatic properties of enzymes with activity in a common reaction is presented. The computational protocol has been applied to the re-design of the protein scaffold of an existing promiscuous esterase from Bacillus subtilis Bs2 to enhance its secondary amidase activity. After the alignment of Bs2 with a non-homologous amidase Candida antarctica lipase B (CALB) within rotation quaternions, a relevant spatial aspartate residue of the latter was transferred to the former as a means to favor the electrostatics of transition state formation, where a clear separation of charges takes place. Deep computational insights, however, revealed a significant conformational change caused by the amino acid replacement, provoking a shift in the pK a of the inserted aspartate and counteracting the anticipated catalytic effect. This prediction was experimentally confirmed with a 1.3-fold increase in activity. The good agreement between theoretical and experimental results, as well as the linear correlation between the electrostatic properties and the activation energy barriers, suggest that the presented computational-based investigation can transform in an enzyme engineering approach.

12.
Pharmaceuticals (Basel) ; 15(5)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35631358

RESUMO

20S proteasome is a main player in the protein degradation pathway in the cytosol, thus intervening in multiple pivotal cellular processes. Over the years the proteasome has emerged as a crucial target for the treatment of many diseases such as neurodegenerative diseases, cancer, autoimmune diseases, developmental disorders, cystic fibrosis, diabetes, cardiac diseases, atherosclerosis, and aging. In this work, the mechanism of proteasome covalent inhibition with bisbenzyl-protected homobelactosin C (hBelC) was explored using quantum mechanics/molecular mechanics (QM/MM) methods. Molecular dynamic simulations were used to describe key interactions established between the hBelC and its unique binding mode in the primed site of the ß5 subunit. The free energy surfaces were computed to characterize the kinetics and thermodynamics of the inhibition process. This study revealed that although the final inhibition product for hBelC is formed according to the same molecular mechanism as one described for hSalA, the free energy profile of the reaction pathway differs significantly from the one previously reported for γ-lactam-ß-lactone containing inhibitors in terms of the height of the activation barrier as well as the stabilization of the final product. Moreover, it was proved that high stabilization of the covalent adduct formed between ß5-subunit and hBelC, together with the presence of aminocarbonyl side chain in the structure of the inhibitor which prevents the hydrolysis of the ester bond from taking place, determines its irreversible character.

13.
ACS Catal ; 12(1): 698-708, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35036042

RESUMO

The COVID-19 pandemic, caused by the severe acute respiratory syndrome coronavirus-2, SARS-CoV-2, shows the need for effective antiviral treatments. Here, we present a simulation study of the inhibition of the SARS-CoV-2 main protease (Mpro), a cysteine hydrolase essential for the life cycle of the virus. The free energy landscape for the mechanism of the inhibition process is explored by QM/MM umbrella sampling and free energy perturbation simulations at the M06-2X/MM level of theory for two proposed peptidyl covalent inhibitors that share the same recognition motif but feature distinct cysteine-targeting warheads. Regardless of the intrinsic reactivity of the modeled inhibitors, namely a Michael acceptor and a hydroxymethyl ketone activated carbonyl, our results confirm that the inhibitory process takes place by means of a two-step mechanism, in which the formation of an ion pair C145/H41 dyad precedes the protein-inhibitor covalent bond formation. The nature of this second step is strongly dependent on the functional groups in the warhead: while the nucleophilic attack of the C145 sulfur atom on the Cα of the double bond of the Michael acceptor takes place concertedly with the proton transfer from H41 to Cß, in the compound with an activated carbonyl, the sulfur attacks the carbonyl carbon concomitant with a proton transfer from H41 to the carbonyl oxygen via the hydroxyl group. An analysis of the free energy profiles, structures along the reaction path, and interactions between the inhibitors and the different pockets of the active site on the protein shows a measurable effect of the warhead on the kinetics and thermodynamics of the process. These results and QM/MM methods can be used as a guide to select warheads to design efficient irreversible and reversible inhibitors of SARS-CoV-2 Mpro.

14.
Chem Sci ; 12(41): 13686-13703, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34760153

RESUMO

The main protease (Mpro) of SARS-CoV-2 is central to viral maturation and is a promising drug target, but little is known about structural aspects of how it binds to its 11 natural cleavage sites. We used biophysical and crystallographic data and an array of biomolecular simulation techniques, including automated docking, molecular dynamics (MD) and interactive MD in virtual reality, QM/MM, and linear-scaling DFT, to investigate the molecular features underlying recognition of the natural Mpro substrates. We extensively analysed the subsite interactions of modelled 11-residue cleavage site peptides, crystallographic ligands, and docked COVID Moonshot-designed covalent inhibitors. Our modelling studies reveal remarkable consistency in the hydrogen bonding patterns of the natural Mpro substrates, particularly on the N-terminal side of the scissile bond. They highlight the critical role of interactions beyond the immediate active site in recognition and catalysis, in particular plasticity at the S2 site. Building on our initial Mpro-substrate models, we used predictive saturation variation scanning (PreSaVS) to design peptides with improved affinity. Non-denaturing mass spectrometry and other biophysical analyses confirm these new and effective 'peptibitors' inhibit Mpro competitively. Our combined results provide new insights and highlight opportunities for the development of Mpro inhibitors as anti-COVID-19 drugs.

15.
Org Biomol Chem ; 19(47): 10424-10431, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34825690

RESUMO

Here, we combine the use of host screening, protein crystallography and QM/MM molecular dynamics simulations to investigate how the protein structure affects iminium catalysis by biotinylated secondary amines in a model 1,4 conjugate addition reaction. Monomeric streptavidin (M-Sav) lacks a quaternary structure and the solvent-exposed reaction site resulted in poor product conversion in the model reaction with low enantio- and regioselectivities. These parameters were much improved when the tetrameric host T-Sav was used; indeed, residues at the symmetrical subunit interface were proven to be critical for catalysis through a mutagenesis study. The use of QM/MM simulations and the asymmetric dimeric variant D-Sav revealed that both Lys121 residues which are located in the hosting and neighboring subunits play a critical role in controlling the stereoselectivity and reactivity. Lastly, the D-Sav template, though providing a lower conversion than that of the symmetric tetrameric counterpart, is likely a better starting point for future protein engineering because each surrounding residue within the asymmetric scaffold can be refined for secondary amine catalysis.


Assuntos
Estreptavidina
16.
J Chem Inf Model ; 61(7): 3604-3614, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34251205

RESUMO

Environmentally friendly processes are nowadays a trending topic to get highly desired chemical compounds and, in this sense, the use of enzyme-catalyzed routes is becoming a promising alternative to traditional synthetic methods. In the present paper, a hybrid quantum mechanics/molecular mechanics (QM/MM) computational study on the epoxidation of alkenes catalyzed by the Ser105Ala variant of the promiscuous Candida antarctica lipase B (CALB) is presented in an attempt to search for alternative paths to get useful intermediates in industries. The catalyzed reaction, described at the atomistic level with a model of the full solvated in a box of water molecules, is compared with the alternative epoxidation of alkenes by peroxy acids in chloroform. Free-energy profiles obtained at the density functional theory (DFT)/MM level show how Ser105Ala CALB is capable of epoxide short alkenes in a two-step process with free-energy barriers, in agreement with available experimental data, that are significantly lower than those of the single-step reaction in solution. The possible (R)-enantioselectivity dictated by the binding step, explored by means of alchemical QM/MM free-energy perturbation (FEP) methods, and the preference for the (S)-enantiomer derived from the free-energy landscape of the chemical steps would cancel out, thus predicting the lack of enantioselectivity experimentally observed. In general, our results provide general information on the molecular mechanism employed by a highly promiscuous enzyme, with potential applications in biotechnology.


Assuntos
Compostos de Epóxi , Lipase , Basidiomycota , Proteínas Fúngicas/metabolismo , Lipase/metabolismo , Simulação de Dinâmica Molecular , Estereoisomerismo
17.
Biochemistry ; 60(16): 1243-1247, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33829766

RESUMO

Methylation of 2-deoxyuridine-5'-monophosphate (dUMP) at the C5 position by the obligate dimeric thymidylate synthase (TSase) in the sole de novo biosynthetic pathway to thymidine 5'-monophosphate (dTMP) proceeds by forming a covalent ternary complex with dUMP and cosubstrate 5,10-methylenetetrahydrofolate. The crystal structure of an analog of this intermediate gives important mechanistic insights but does not explain the half-of-the-sites activity of the enzyme. Recent experiments showed that the C5 proton and the catalytic Cys are eliminated in a concerted manner from the covalent ternary complex to produce a noncovalent bisubstrate intermediate. Here, we report the crystal structure of TSase with a close synthetic analog of this intermediate in which it has partially reacted with the enzyme but in only one protomer, consistent with the half-of-the-sites activity of this enzyme. Quantum mechanics/molecular mechanics simulations confirmed that the analog could undergo catalysis. The crystal structure shows a new water 2.9 Å from the critical C5 of the dUMP moiety, which in conjunction with other residues in the network, may be the elusive general base that abstracts the C5 proton of dUMP during the reaction.


Assuntos
Timidilato Sintase/química , Domínio Catalítico , Cristalografia por Raios X , Cinética , Modelos Moleculares , Timidilato Sintase/metabolismo
18.
Chem Commun (Camb) ; 57(15): 1919-1922, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33496282

RESUMO

Here, the streptavidin-biotin technology was applied to enable organocatalytic transfer hydrogenation. By introducing a biotin-tethered pyrrolidine (1) to the tetrameric streptavidin (T-Sav), the resulting hybrid catalyst was able to mediate hydride transfer from dihydro-benzylnicotinamide (BNAH) to α,ß-unsaturated aldehydes. Hydrogenation of cinnamaldehyde and some of its aryl-substituted analogues was found to be nearly quantitative. Kinetic measurements revealed that the T-Sav:1 assembly possesses enzyme-like behavior, whereas isotope effect analysis, performed by QM/MM simulations, illustrated that the step of hydride transfer is at least partially rate-limiting. These results have proven the concept that T-Sav can be used to host secondary amine-catalyzed transfer hydrogenations.


Assuntos
Biotina/química , Estreptavidina/química , Catálise , Enzimas/química , Enzimas/metabolismo , Hidrogenação , Modelos Moleculares , Estrutura Molecular , Conformação Proteica
19.
ACS Catal ; 11(14): 8635-8644, 2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35875595

RESUMO

Convergent evolution has resulted in nonhomologous enzymes that contain similar active sites that catalyze the same primary and secondary reactions. Comparing how these enzymes achieve their reaction promiscuity can yield valuable insights to develop functions from the optimization of latent activities. In this work, we have focused on the promiscuous amidase activity in the esterase from Bacillus subtilis (Bs2) and compared with the same activity in the promiscuous lipase B from Candida antarctica (CALB). The study, combining multiscale quantum mechanics/molecular mechanics (QM/MM) simulations, deep machine learning approaches, and experimental characterization of Bs2 kinetics, confirms the amidase activity of Bs2 and CALB. The computational results indicate that both enzymes offer a slightly different reaction environment reflected by electrostatic effects within the active site, thus resulting in a different reaction mechanism during the acylation step. A convolutional neural network (CNN) has been used to understand the conserved amino acids among the evolved protein family and suggest that Bs2 provides a more robust protein scaffold to perform future mutagenesis studies. Results derived from this work will help reveal the origin of enzyme promiscuity, which will find applications in enzyme (re)design, particularly in creating a highly active amidase.

20.
ACS Catal ; 10(14): 7907-7914, 2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32905264

RESUMO

The contribution of ligand-ligand electrostatic interaction to transition state formation during enzyme catalysis has remained unexplored, even though electrostatic forces are known to play a major role in protein functions and have been investigated by the vibrational Stark effect (VSE). To monitor electrostatic changes along important steps during catalysis, we used a nitrile probe (T46C-CN) inserted proximal to the reaction center of three dihydrofolate reductases (DHFRs) with different biophysical properties, Escherichia coli DHFR (EcDHFR), its conformationally impaired variant (EcDHFR-S148P), and Geobacillus stearothermophilus DHFR (BsDHFR). Our combined experimental and computational approach revealed that the electric field projected by the substrate toward the probe negates those exerted by the cofactor when both are bound within the enzymes. This indicates that compared to previous models that focus exclusively on subdomain reorganization and protein-ligand contacts, ligand-ligand interactions are the key driving force to generate electrostatic environments conducive for catalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...