Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35955171

RESUMO

The rapid development of agricultural technologies has triggered new possibilities of using plant waste as fuel. Briquetting plant material is one of the methods of using crop residue as permanent energy carriers. Nevertheless, to maintain the normalised properties of briquettes, their small-scale production should follow an established and well-considered deliberate technological process limiting production costs. The material to be used for energy production should, in particular, be pre-prepared in terms of crushing and moisture content to ensure the right product parameters. The article aims to provide an analysis of briquettes with varied physicochemical parameters to determine and order homogenous groups for selected parameters characteristic for briquettes made from various bioenergy materials. The specific aim of the article required a statistical analysis as a tool for separating the selected factors. An analysis of variance (ANOVA) was involved, together with a post-hoc Duncan test. The analyses demonstrated that the briquette composition, such as bulk value, moisture, and ash content can enhance the briquette quality. In discussion, the straw used was compared with other kinds of agricultural biomass samples and considerable differences were identified. The chemical analysis showed a high content of carbon (from 42.64 to 45.66%) and oxygen (from 47.60 to 49.68%). The percentage share of hydrogen in the chemical structure of the materials accounted for approximately 6%. The ash content found while investigating various straw types ranged from 3.67 to 4.26%, making it lower than reported in the literature. The study also looked at the energetic potential of straw and wood biomass. It was noticed that bioenergetic sources are much potentially higher than the materials used in the traditional power sector. Especially where it concerns an unlimited source that can be provided to the bio-energetic sector. The study is intended to focus the future energy sector on the use of bioenergy in terms of applying straw to energy production purposes.

2.
Materials (Basel) ; 15(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35207892

RESUMO

The kinetics and dynamics of the stiff and flexible tines with the duckfoot and the coulter after impact with stones embedded in compacted soil were examined. The beak of the duckfoot was positioned in the axis of the row of stones embedded in the soil at the depth of stones thickness. The coulter covered the stone or impact the edge of the stone halfway along its length. The tools worked at a speed of 0.83-2.22 m·s-1 and a working depth of 0.05-0.10 m. The results of specific parameters were compared to the response of the tools to loads in soil without stones. For both soil conditions, the kinetics of the flexible tine was 24 times more reactive, and the dynamic loads were two times lower than for the stiff tine. The responses of both tines were suppressed along with the working depth because of the more favorable place of impact of the duckfoot beak with the stone. Along with the working speed, for a stiff tine, the specific accelerations decreased significantly, by ten times, and the specific forces increased slightly, by 1.6 times. Among the two systems of setting the coulter, the impact of the cutting edge of the coulter with the stone in the middle of its length was more unfavorable than the work of the coulter covering the stone.

3.
Materials (Basel) ; 15(4)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35208108

RESUMO

Analysis of the state of knowledge showed a gap in the description of tool-stone feedback. Therefore, the aim of this study was to investigate tool-stone interactions. Spherical-like silicate stones were hit by stiff and flexible tines with a duckfoot or a coulter. The tools worked with various parameters in the depth range of 0.05-0.10 m and a speed of 0.83-2.22 m·s-1. The characteristics of stone movement were specific to the type of tool and were described by the Numerical Stone Movement Scale developed for the purpose of the research. After the impact with the stiff tine, the stones were thrown the greatest distance of 0.26-1.08 m, and these distances were strongly dependent on the working speed and slightly dependent on the working depth. Large vibrations of the flexible tine and the location of the contact point of the tine in relation to the centre of the stone thickness contributed to the random behaviour of stones that were slightly moved, rotated or displaced. The specific work required to remove the stone reflected the distance travelled by the stone as well as the specific force which largely contributed to increasing the differences in this work between both tines.

4.
Materials (Basel) ; 13(19)2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019574

RESUMO

This study aimed to optimise the production conditions of wheat straw (WS) pellets and pellets with the additives of cassava starch (CS) or calcium carbonate (CC) based on the criteria of pellet strength and water absorption by crushed pellets. The pellets produced using a 2-10%-wt/wt additive ratio, material moisture of 10-30% w.b., die height of 66-86 mm, and material temperature of 78-108 °C were tested. The influence these factors on the strength parameters of pellets was different than on the water absorption by the crushed pellets. The pellets made of WS blended with CC additive were characterised by better strength parameters and the compressed pellets were characterised by better water absorption than those with CS. High and positive correlation among specific pellet compression work, elasticity modulus for pellet compression, and tensile strength values were observed. As the strength parameters of pellets showed high correlation with single pellet density, for the consistency of conclusions, the optimal conditions for pellet production were assumed based on the density. For optimal conditions at 4% wt/wt additive ratio, 23% w.b. material moisture, 78 mm die height, and 80 °C material temperature, the specific pellet compression work was 3.22 mJ·mm-2, elasticity modulus was 5.78 MPa, and maximum tensile strength of the pellets was 2.68 MPa; moreover, the water absorption by crushed pellets amounted to 2.60 g H2O·g-1 of dry matter.

5.
Materials (Basel) ; 13(20)2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33081323

RESUMO

The aim of this study was to investigate the pressure agglomeration process of wheat straw (WS) and the blends of WS with calcium carbonate (CC) or cassava straw (CS) with a ratio of 6% wt./wt. from seven separate fractions with sizes in the range of 0.21-2.81 mm. The agglomeration was performed at a moisture of 30% wb and a material temperature of 78 °C, with a dose of 0.1 g, in a die of diameter 8 mm and height 80 mm. The effects of the process were evaluated based on the compaction parameters and the pellets' density, tensile strength, and water absorption. The incorporation of additives into the WS improved the pellet process and quality. Refined results were achieved after adding CC, as compared to those achieved after adding CS, and the preferred particle size was in the range of 1.00-1.94 mm. This was because, under the given conditions, the back pressure in the die chamber significantly increased, allowing the achievement of a single pellet density of 800 kg·m-3. The pellets were resistant to compressive loads and cracked only at tensile strength of 6 MPa and a specific compression work of 6.5 mJ·mm-2. The addition of CC to the WS improved the strength of the adhesive and the cohesive bonds between the particles. The water absorption for the uncrushed pellets was considerably less than that for crushed pellets, which results in the safer storage of uncrushed pellets and excellent moisture absorption of crushed pellets. The addition of CC to the WS offers benefits in the form of pellet strength with a high water absorption capability. Notably, a study of crushed pellet litter under broiler rearing conditions and an analysis of the operational costs of using WS additives are required for implementing this study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...