Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Cell Metab ; 10(5): 366-78, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19883615

RESUMO

Kinase suppressors of Ras 1 and 2 (KSR1 and KSR2) function as molecular scaffolds to potently regulate the MAP kinases ERK1/2 and affect multiple cell fates. Here we show that KSR2 interacts with and modulates the activity of AMPK. KSR2 regulates AMPK-dependent glucose uptake and fatty acid oxidation in mouse embryonic fibroblasts and glycolysis in a neuronal cell line. Disruption of KSR2 in vivo impairs AMPK-regulated processes affecting fatty acid oxidation and thermogenesis to cause obesity. Despite their increased adiposity, ksr2(-/-) mice are hypophagic and hyperactive but expend less energy than wild-type mice. In addition, hyperinsulinemic-euglycemic clamp studies reveal that ksr2(-/-) mice are profoundly insulin resistant. The expression of genes mediating oxidative phosphorylation is also downregulated in the adipose tissue of ksr2(-/-) mice. These data demonstrate that ksr2(-/-) mice are highly efficient in conserving energy, revealing a novel role for KSR2 in AMPK-mediated regulation of energy metabolism.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Metabolismo Energético , Resistência à Insulina , Proteínas Serina-Treonina Quinases/metabolismo , Tecido Adiposo/metabolismo , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Metabolismo Energético/fisiologia , Ácidos Graxos/metabolismo , Glucose/metabolismo , Glicólise/fisiologia , Resistência à Insulina/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Knockout , Obesidade/etiologia , Obesidade/metabolismo , Oxirredução , Fosforilação Oxidativa , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Termogênese/fisiologia
2.
Am J Physiol Cell Physiol ; 292(1): C125-36, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16971499

RESUMO

Increased conversion of glucose to lactic acid associated with decreased mitochondrial respiration is a unique feature of tumors first described by Otto Warburg in the 1920s. Recent evidence suggests that the Warburg effect is caused by oncogenes and is an underlying mechanism of malignant transformation. Using a novel approach to measure cellular metabolic rates in vitro, the bioenergetic basis of this increased glycolysis and reduced mitochondrial respiration was investigated in two human cancer cell lines, H460 and A549. The bioenergetic phenotype was analyzed by measuring cellular respiration, glycolysis rate, and ATP turnover of the cells in response to various pharmacological modulators. H460 and A549 cells displayed a dependency on glycolysis and an ability to significantly upregulate this pathway when their respiration was inhibited. The converse, however, was not true. The cell lines were attenuated in oxidative phosphorylation (OXPHOS) capacity and were unable to sufficiently upregulate mitochondrial OXPHOS when glycolysis was disabled. This observed mitochondrial impairment was intimately linked to the increased dependency on glycolysis. Furthermore, it was demonstrated that H460 cells were more glycolytic, having a greater impairment of mitochondrial respiration, compared with A549 cells. Finally, the upregulation of glycolysis in response to mitochondrial ATP synthesis inhibition was dependent on AMP-activated protein kinase activity. In summary, our results demonstrate a bioenergetic phenotype of these two cancer cell lines characterized by increased rate of glycolysis and a linked attenuation in their OXPHOS capacity. These metabolic alterations provide a mechanistic explanation for the growth advantage and apoptotic resistance of tumor cells.


Assuntos
Metabolismo Energético , Glicólise , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Proteínas Quinases Ativadas por AMP , Ácidos/metabolismo , Trifosfato de Adenosina/metabolismo , Linhagem Celular Tumoral , Sistemas Computacionais , Líquido Extracelular/metabolismo , Humanos , Complexos Multienzimáticos/metabolismo , Fosforilação Oxidativa , Consumo de Oxigênio , Proteínas Serina-Treonina Quinases/metabolismo , Prótons , Regulação para Cima
3.
J Biol Chem ; 280(25): 23741-7, 2005 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-15826951

RESUMO

BSEP, MDR1, and MDR2 ATP binding cassette transporters are targeted to the apical (canalicular) membrane of hepatocytes, where they mediate ATP-dependent secretion of bile acids, drugs, and phospholipids, respectively. Sorting to the apical membrane is essential for transporter function; however, little is known regarding cellular proteins that bind ATP binding cassette proteins and regulate their trafficking. A yeast two-hybrid screen of a rat liver cDNA library identified the myosin II regulatory light chain, MLC2, as a binding partner for BSEP, MDR1, and MDR2. The interactions were confirmed by glutathione S-transferase pulldown and co-immunoprecipitation assays. BSEP and MLC2 were overrepresented in a rat liver subcellular fraction enriched in canalicular membrane vesicles, and MLC2 colocalized with BSEP in the apical domain of hepatocytes and polarized WifB, HepG2, and Madin-Darby canine kidney cells. Expression of a dominant negative, non-phosphorylatable MLC2 mutant reduced steady state BSEP levels in the apical domain of polarized Madin-Darby canine kidney cells. Pulse-chase studies revealed that Blebbistatin, a specific myosin II inhibitor, severely impaired delivery of newly synthesized BSEP to the apical surface. These findings indicate that myosin II is required for BSEP trafficking to the apical membrane.


Assuntos
Ácidos e Sais Biliares/metabolismo , Proteínas de Transporte/metabolismo , Rim/metabolismo , Miosina Tipo II/fisiologia , Animais , Canalículos Biliares/metabolismo , Linhagem Celular , Cães , Imunoprecipitação , Rim/citologia , Microscopia de Fluorescência , Fosforilação , Plasmídeos , Ligação Proteica , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo
4.
J Biol Chem ; 279(31): 32761-70, 2004 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-15159385

RESUMO

ATP-binding cassette (ABC)-type proteins are essential for bile formation in vertebrate liver. BSEP, MDR1, MDR2, and MRP2 ABC transporters are targeted to the apical (canalicular) membrane of hepatocytes where they execute ATP-dependent transport of bile acids, drugs, amphipathic cations, phospholipids, and conjugated organic anions, respectively. Changes in activity and abundance of transporters in the canalicular membrane regulate bile flow; however, little is known regarding cellular proteins that bind ABC transporters and regulate their trafficking. A yeast two-hybrid screen identified HAX-1 as a binding partner for BSEP, MDR1, and MDR2. The interactions were validated biochemically by glutathione S-transferase pull-down and co-immunoprecipitation assays. BSEP and HAX-1 were over-represented in rat liver subcellular fractions enriched for canalicular membrane vesicles, microsomes, and clathrin-coated vesicles. HAX-1 was bound to BSEP, MDR1, and MDR2 in canalicular membrane vesicles and co-localized with BSEP and MDR1 in the apical membrane of Madin-Darby canine kidney (MDCK) cells. RNA interference of HAX-1 increased BSEP levels in the apical membrane of MDCK cells by 71%. Pulse-chase studies indicated that HAX-1 depletion did not affect BSEP translation, post-translational modification, delivery to the plasma membrane, or half-life. HAX-1 depletion resulted in an increased peak of metabolically labeled apical membrane BSEP at 4 h and enhanced retention at 6 and 9 h. HAX-1 also interacts with cortactin. Expression of dominant negative cortactin increased steady state levels of BSEP 2-fold in the apical membrane of MDCK cells, as did expression of dominant negative EPS15. These findings suggest that HAX-1 and cortactin participate in BSEP internalization from the apical membrane.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Ácidos e Sais Biliares/química , Proteínas/fisiologia , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Animais , Transporte Biológico , Biotinilação , Cátions , Linhagem Celular , Membrana Celular/metabolismo , Cortactina , Cães , Escherichia coli/metabolismo , Genes Dominantes , Glutationa Transferase/metabolismo , Hepatócitos/metabolismo , Humanos , Immunoblotting , Fígado/metabolismo , Proteínas dos Microfilamentos/metabolismo , Microscopia de Fluorescência , Modelos Biológicos , Dados de Sequência Molecular , Fosfolipídeos/química , Plasmídeos/metabolismo , Testes de Precipitina , Ligação Proteica , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional , Transporte Proteico , Proteínas/química , Interferência de RNA , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Frações Subcelulares , Fatores de Tempo , Transfecção , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...