Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Struct Mol Biol ; 30(10): 1456-1467, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37696958

RESUMO

The extent and efficacy of DNA end resection at DNA double-strand breaks (DSB) determine the repair pathway choice. Here we describe how the 53BP1-associated protein DYNLL1 works in tandem with the Shieldin complex to protect DNA ends. DYNLL1 is recruited to DSBs by 53BP1, where it limits end resection by binding and disrupting the MRE11 dimer. The Shieldin complex is recruited to a fraction of 53BP1-positive DSBs hours after DYNLL1, predominantly in G1 cells. Shieldin localization to DSBs depends on MRE11 activity and is regulated by the interaction of DYNLL1 with MRE11. BRCA1-deficient cells rendered resistant to PARP inhibitors by the loss of Shieldin proteins can be resensitized by the constitutive association of DYNLL1 with MRE11. These results define the temporal and functional dynamics of the 53BP1-centric DNA end resection factors in cells.


Assuntos
Proteína BRCA1 , Quebras de DNA de Cadeia Dupla , Proteína BRCA1/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , DNA/metabolismo , Reparo do DNA por Junção de Extremidades , Núcleo Celular/metabolismo , Reparo do DNA
2.
bioRxiv ; 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37034578

RESUMO

Extent and efficacy of DNA end resection at DNA double strand break (DSB)s determines the choice of repair pathway. Here we describe how the 53BP1 associated protein DYNLL1 works in tandem with Shieldin and the CST complex to protect DNA ends. DYNLL1 is recruited to DSBs by 53BP1 where it limits end resection by binding and disrupting the MRE11 dimer. The Shieldin complex is recruited to a fraction of 53BP1-positive DSBs hours after DYNLL1 predominantly in the G1 cells. Shieldin localization to DSBs is dependent on MRE11 activity and is regulated by the interaction of DYNLL1 with MRE11. BRCA1-deficient cells rendered resistant to PARP inhibitors by the loss of Shieldin proteins can be re-sensitized by the constitutive association of DYNLL1 with MRE11. These results define the temporal and functional dynamics of the 53BP1-centric DNA end resection factors in cells.

3.
DNA Repair (Amst) ; 111: 103289, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35124373

RESUMO

The factors involved in DNA damage recognition and repair are tightly regulated to ensure proper repair pathway choice. The mechanism(s) that determines the cell cycle-dependent turnover of these DNA damage repair factors remains unclear. Here, we show that Sp1, which regulates double-strand break (DSB) repair pathway choice through localization of 53BP1, is sumoylated at Lys16 following DNA damage; Sp1 sumoylation is required for its degradation and the removal of both Sp1 and 53BP1 from DSB sites. Induction of DNA DSBs induces Sp1 phosphorylation at DSBs by ATM, which is necessary for the subsequent sumoylation of Sp1. In addition to this damage-induced ATM-dependent phosphorylation and sumoylation, phosphorylation of Sp1 at Ser59 by Cyclin A/cdk2 upon entry into S phase is necessary for recognition, ubiquitination and degradation by the SUMO-targeted E3 ubiquitin ligase, RNF4. Eliminating Sp1 sumoylation by mutation of Sp1 at Lys16 (K16R) precluded removal of both Sp1 and 53BP1 from DSBs in S phase, resulting in decreased BRCA1 recruitment and defective homologous recombination (HR). Like BRCA1 deficient cells, cells expressing Sp1K16R are sensitive to PARP inhibition due to failure to degrade Sp1 and recruit BRCA1 resulting in defective HR that is rescued by knockdown of 53BP1. These results reveal the dynamic regulation of Sp1 and its role in the assembly and disassembly of DNA repair factors at DSBs.


Assuntos
Quebras de DNA de Cadeia Dupla , Sumoilação , Dano ao DNA , Reparo do DNA , Recombinação Homóloga , Proteínas Nucleares/metabolismo , Fase S , Fatores de Transcrição/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
4.
Geroscience ; 44(2): 683-698, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34550526

RESUMO

Persistent DNA damage (genotoxic stress) triggers signaling cascades that drive cells into apoptosis or senescence to avoid replicating a damaged genome. Sp1 has been found to play a role in double strand break (DSB) repair, and a link between Sp1 and aging has also been established, where Sp1 protein, but not RNA, levels decrease with age. Interestingly, inhibition ATM reverses the age-related degradation of Sp1, suggesting that DNA damage signaling is involved in senescence-related degradation of Sp1. Proteasomal degradation of Sp1 in senescent cells is mediated via sumoylation, where sumoylation of Sp1 on lysine 16 is increased in senescent cells. Taking into consideration our previous findings that Sp1 is phosphorylated by ATM in response to DNA damage and that proteasomal degradation of Sp1 at DSBs is also mediated by its sumoylation and subsequent interaction with RNF4, we investigated the potential contribution of Sp1's role as a DSB repair factor in mediating cellular senescence. We report here that Sp1 expression is decreased with a concomitant increase in senescence markers in response to DNA damage. Mutation of Sp1 at serine 101 to create an ATM phospho-null mutant, or mutation of lysine 16 to create a sumo-null mutant, prevents the sumoylation and subsequent proteasomal degradation of Sp1 and results in a decrease in senescence. Conversely, depletion of Sp1 or mutation of Sp1 to create an ATM phosphomimetic results in premature degradation of Sp1 and an increase in senescence markers. These data link a loss of genomic stability with senescence through the action of a DNA damage repair factor.


Assuntos
Dano ao DNA , Lisina , Senescência Celular , Reparo do DNA , Sumoilação
5.
DNA Repair (Amst) ; 105: 103171, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34252870

RESUMO

In response to DNA damage, most factors involved in damage recognition and repair are tightly regulated to ensure proper repair pathway choice. Histone acetylation at DNA double strand breaks (DSBs) by p300 histone acetyltransferase (HAT) is critical for the recruitment of DSB repair proteins to chromatin. Here, we show that phosphorylation of Sp1 by ATM increases its interaction with p300 and that Sp1-dependent recruitment of p300 to DSBs is necessary to modify the histones associated with p300 activity and NHEJ repair factor recruitment and repair. p300 is known to acetylate multiple residues on histones H3 and H4 necessary for NHEJ. Acetylation of H3K18 by p300 is associated with the recruitment of the SWI/SNF chromatin remodeling complex and Ku70 to DSBs for NHEJ repair. Depletion of Sp1 results in decreased acetylation of lysines on histones H3 and H4. Specifically, cells depleted of Sp1 display defects in the acetylation of H3K18, resulting in defective SWI/SNF and Ku70 recruitment to DSBs. These results shed light on mechanisms by which chromatin remodelers are regulated to ensure activation of the appropriate DSB repair pathway.


Assuntos
Montagem e Desmontagem da Cromatina , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Autoantígeno Ku/metabolismo , Fator de Transcrição Sp1/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular Tumoral , DNA/metabolismo , Células HEK293 , Humanos , Fosforilação , Processamento de Proteína Pós-Traducional
6.
Cell Rep ; 34(11): 108840, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33730584

RESUMO

Although many of the factors, epigenetic changes, and cell cycle stages that distinguish repair of double-strand breaks (DSBs) by homologous recombination (HR) from non-homologous end joining (NHEJ) are known, the underlying mechanisms that determine pathway choice are incompletely understood. Previously, we found that the transcription factor Sp1 is recruited to DSBs and is necessary for repair. Here, we demonstrate that Sp1 localizes to DSBs in G1 and is necessary for recruitment of the NHEJ repair factor, 53BP1. Phosphorylation of Sp1-S59 in early S phase evicts Sp1 and 53BP1 from the break site; inhibition of that phosphorylation results in 53BP1 and Sp1 remaining at DSBs in S phase cells, precluding BRCA1 binding and suppressing HR. Expression of Sp1-S59A increases sensitivity of BRCA1+/+ cells to poly (ADP-ribose) polymerase (PARP) inhibition similar to BRCA1 deficiency. These data demonstrate how Sp1 integrates the cell cycle and DSB repair pathway choice to favor NHEJ.


Assuntos
Ciclo Celular , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Fator de Transcrição Sp1/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Ciclina A/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Humanos , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...