Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 176: 113819, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38163720

RESUMO

Meeting requirements for dietary proteins, especially of essential amino acids (EAAs), is critical for the life-long health of living organisms. However, defining EAA targets for preparing biologically-matched nutrition that satisfies metabolic requirements for protein remains challenging. Previous research has shown the advantages of 'exome matching' in representing the specific requirement of dietary AAs, where the target dietary AA profile was derived from in silico translation of the genome of an organism, specifically responsible for protein expression (the 'exome'). However, past studies have assessed these effects in only one sex, for few parameters (body mass and composition), and have used purified diets in which protein is supplied as a mixture of individual AAs. Here, for the first time, we utilise a computational method to guide the formulation of custom protein blends and test if exome matching can be achieved at the intact protein level, through blending standard protein ingredients, ultimately leading to optimal growth, longevity and reproductive function. Mice were provided ad libitum (ad lib) access to one of the four iso-energetic protein-limited diets, two matched and two mis-matched to the mouse exome target, and fed at a fixed protein energy level of 6.2%. During or following 13-weeks of feeding, the food intake, body growth, composition and reproductive functions were measured. Compared to the two mis-matched diets, male and female animals on the exome-matched diet with protein digestibility correction applied, exhibited significantly improved growth rates and final body mass. The feed conversion efficiency in the same diet was also increased by 62% and 40% over the worst diets for males and females, respectively. Male, not female, exhibited higher accretion of lean body mass with the matched, digestibility-corrected diet. All reproductive function measures in both sexes were comparable among diets, with the exception of testicular daily sperm production in males, which was higher in the two matched diets versus the mis-matched diets. The results collectively demonstrate the pronounced advantages of exome-matching in supporting body growth and improving feed conversion efficiency in both sexes. However, the potential impact of this approach in enhancing fertility needs further investigation.


Assuntos
Exoma , Sêmen , Masculino , Camundongos , Feminino , Animais , Dieta , Proteínas Alimentares , Longevidade
2.
J Dev Orig Health Dis ; 13(1): 39-48, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33781367

RESUMO

Through drinking water, humans are commonly exposed to atrazine, a herbicide that acts as an endocrine and metabolic disruptor. It interferes with steroidogenesis, including promoting oestrogen production and altering cell metabolism. However, its precise impact on uterine development remains unknown. This study aimed to determine the effect of prolonged atrazine exposure on the uterus. Pregnant mice (n = 5/group) received 5 mg/kg body weight/day atrazine or DMSO in drinking water from gestational day 9.5 until weaning. Offspring continued to be exposed until 3 or 6 months of age (n = 5-9/group), when uteri were collected for morphological and molecular analyses and steroid quantification. Endometrial hyperplasia and leiomyoma were evident in the uteri of atrazine-exposed mice. Uterine oestrogen concentration, oestrogen receptor expression, and localisation were similar between groups, at both ages (P > 0.1). The expression and localisation of key epithelial-to-mesenchymal transition (EMT) genes and proteins, critical for tumourigenesis, remained unchanged between treatments, at both ages (P > 0.1). Hence, oestrogen-mediated changes to established EMT markers do not appear to underlie abnormal uterine morphology evident in atrazine exposure mice. This is the first report of abnormal uterine morphology following prolonged atrazine exposure starting in utero, it is likely that the abnormalities identified would negatively affect female fertility, although mechanisms remain unknown and require further study.


Assuntos
Atrazina/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/etiologia , Útero/efeitos dos fármacos , Animais , Atrazina/metabolismo , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/patologia , Útero/patologia , Útero/fisiopatologia
3.
Toxicol Sci ; 166(1): 97-107, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30085306

RESUMO

With increasing improvements in cancer survival rates, it is critical to reduce the significant long-term side effects that afflict patients following treatment. For women, consequences of chemotherapy-induced damage to the reproductive system include infertility and premature menopause, which adversely effects cognition, mood, cardiovascular, bone, and sexual health, and increases the risk of early mortality. These long-term effects impact patient's life quality and highlight a significant and on-going burden on the health system after treatment. However, the precise mechanisms through which chemotherapeutic agents induce ovarian damage and primordial follicle depletion remain to be characterized. Hence, preventing the development of effective pharmacological methods to preserve fertility and improve quality of life after treatment. The chemotherapeutic agent 5-Fluorouracil (5FU) is not deemed cytotoxic to the ovary, however, risks to long-term fertility after multiple doses are not known. Therefore, we sought to evaluate the impact of 3, weekly doses of 5FU treatment on the ovary. Using a mouse model enabled accurate histomorphometric analysis of follicle numbers and ovarian structure and function, to accurately assess cumulative impact of 5FU on the ovary. This study clearly demonstrated that multidose 5FU treatment resulted in dramatic and progressive atresia of growing follicles and a profound decrease in ovarian volume due to reduced corpus luteum counts. However, primordial follicle numbers were unaffected. Thus, 5FU is unlikely to cause permanent infertility when administered to women of pre or reproductive age. Furthermore, this study suggests that depletion of the growing follicle population is insufficient to stimulate follicle activation and primordial follicle depletion.


Assuntos
Antimetabólitos Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Dano ao DNA , Fluoruracila/toxicidade , Atresia Folicular/efeitos dos fármacos , Folículo Ovariano/efeitos dos fármacos , Animais , Antimetabólitos Antineoplásicos/administração & dosagem , Apoptose/genética , Corpo Lúteo/efeitos dos fármacos , Corpo Lúteo/crescimento & desenvolvimento , Corpo Lúteo/patologia , Relação Dose-Resposta a Droga , Esquema de Medicação , Feminino , Fluoruracila/administração & dosagem , Atresia Folicular/genética , Injeções Intraperitoneais , Camundongos Endogâmicos C57BL , Folículo Ovariano/crescimento & desenvolvimento , Folículo Ovariano/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...