Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(6)2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36980294

RESUMO

Efficacy and safety considerations constitute essential steps during development of in vivo gene therapies. Herein, we evaluated efficacy and safety of splice factor-based treatments to correct mutation-induced splice defects in an Opa1 mutant mouse line. We applied adeno-associated viruses to the retina. The viruses transduced retinal cells with an engineered U1 snRNA splice factor designed to correct the Opa1 splice defect. We found the treatment to be efficient in increasing wild-type Opa1 transcripts. Correspondingly, Opa1 protein levels increased significantly in treated eyes. Measurements of retinal morphology and function did not reveal therapy-related side-effects supporting the short-term safety of the treatment. Alterations of potential off-target genes were not detected. Our data suggest that treatments of splice defects applying engineered U1 snRNAs represent a promising in vivo therapeutic approach. The therapy increased wild-type Opa1 transcripts and protein levels without detectable morphological, functional or genetic side-effects in the mouse eye. The U1 snRNA-based therapy can be tailored to specific disease gene mutations, hence, raising the possibility of a wider applicability of this promising technology towards treatment of different inherited retinal diseases.


Assuntos
Sítios de Splice de RNA , Splicing de RNA , Animais , Camundongos , Splicing de RNA/genética , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Retina/metabolismo
2.
Prog Retin Eye Res ; 83: 100935, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33340656

RESUMO

Dominant optic atrophy (DOA) is an inherited mitochondrial disease leading to specific degeneration of retinal ganglion cells (RGCs), thus compromising transmission of visual information from the retina to the brain. Usually, DOA starts during childhood and evolves to poor vision or legal blindness, affecting the central vision, whilst sparing the peripheral visual field. In 20% of cases, DOA presents as syndromic disorder, with secondary symptoms affecting neuronal and muscular functions. Twenty years ago, we demonstrated that heterozygous mutations in OPA1 are the most frequent molecular cause of DOA. Since then, variants in additional genes, whose functions in many instances converge with those of OPA1, have been identified by next generation sequencing. OPA1 encodes a dynamin-related GTPase imported into mitochondria and located to the inner membrane and intermembrane space. The many OPA1 isoforms, resulting from alternative splicing of three exons, form complex homopolymers that structure mitochondrial cristae, and contribute to fusion of the outer membrane, thus shaping the whole mitochondrial network. Moreover, OPA1 is required for oxidative phosphorylation, maintenance of mitochondrial genome, calcium homeostasis and regulation of apoptosis, thus making OPA1 the Swiss army-knife of mitochondria. Understanding DOA pathophysiology requires the understanding of RGC peculiarities with respect to OPA1 functions. Besides the tremendous energy requirements of RGCs to relay visual information from the eye to the brain, these neurons present unique features related to their differential environments in the retina, and to the anatomical transition occurring at the lamina cribrosa, which parallel major adaptations of mitochondrial physiology and shape, in the pre- and post-laminar segments of the optic nerve. Three DOA mouse models, with different Opa1 mutations, have been generated to study intrinsic mechanisms responsible for RGC degeneration, and these have further revealed secondary symptoms related to mitochondrial dysfunctions, mirroring the more severe syndromic phenotypes seen in a subgroup of patients. Metabolomics analyses of cells, mouse organs and patient plasma mutated for OPA1 revealed new unexpected pathophysiological mechanisms related to mitochondrial dysfunction, and biomarkers correlated quantitatively to the severity of the disease. Here, we review and synthesize these data, and propose different approaches for embracing possible therapies to fulfil the unmet clinical needs of this disease, and provide hope to affected DOA patients.


Assuntos
Atrofia Óptica Autossômica Dominante , Animais , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Humanos , Camundongos , Mitocôndrias , Atrofia Óptica Autossômica Dominante/genética , Atrofia Óptica Autossômica Dominante/metabolismo , Nervo Óptico/metabolismo , Células Ganglionares da Retina/metabolismo
3.
J Bacteriol ; 202(5)2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-31843798

RESUMO

Anaerobic degradation of p-cresol (4-methylphenol) by the denitrifying betaproteobacterium Aromatoleum aromaticum EbN1 is regulated with high substrate specificity, presumed to be mediated by the predicted σ54-dependent two-component system PcrSR. An unmarked, in-frame ΔpcrSR deletion mutant showed reduced expression of the genes cmh (21-fold) and hbd (8-fold) that encode the two enzymes for initial oxidation of p-cresol to p-hydroxybenzoate compared to their expression in the wild type. The expression of cmh and hbd was restored by in trans complementation with pcrSR in the ΔpcrSR background to even higher levels than in the wild type. This is likely due to ∼200-/∼30-fold more transcripts of pcrSR in the complemented mutant. The in vivo responsiveness of A. aromaticum EbN1 to p-cresol was studied in benzoate-limited anaerobic cultures by the addition of p-cresol at various concentrations (from 100 µM down to 0.1 nM). Time-resolved transcript profiling by quantitative reverse transcription-PCR (qRT-PCR) revealed that the lowest p-cresol concentrations just affording cmh and hbd expression (response threshold) ranged between 1 and 10 nM, which is even more sensitive than the respective odor receptors of insects. A similar response threshold was determined for another alkylphenol, p-ethylphenol, which strain EbN1 anaerobically degrades via a different route and senses by the σ54-dependent one-component system EtpR. Based on these data and theoretical considerations, p-cresol or p-ethylphenol added as a single pulse (10 nM) requires less than a fraction of a second to reach equilibrium between intra- and extracellular space (∼20 molecules per cell), with an estimated Kd (dissociation constant) of <100 nM alkylphenol (p-cresol or p-ethylphenol) for its respective sensory protein (PcrS or EtpR).IMPORTANCE Alkylphenols (like p-cresol and p-ethylphenol) represent bulk chemicals for industrial syntheses. Besides massive local damage events, large-scale micropollution is likewise of environmental and health concern. Next to understanding how such pollutants can be degraded by microorganisms, it is also relevant to determine the microorganisms' lower threshold of responsiveness. Aromatoleum aromaticum EbN1 is a specialist in anaerobic degradation of aromatic compounds, employing a complex and substrate-specifically regulated catabolic network. The present study aims at verifying the predicted role of the PcrSR system in sensing p-cresol and at determining the threshold of responsiveness for alkylphenols. The findings have implications for the enigmatic persistence of dissolved organic matter (escape from biodegradation) and for the lower limits of aromatic compounds required for bacterial growth.


Assuntos
Anaerobiose , Biodegradação Ambiental , Poluentes Ambientais/química , Fenóis/química , Algoritmos , Regulação Bacteriana da Expressão Gênica , Modelos Teóricos , Mutação , Proteoma , Rhodocyclaceae/genética , Rhodocyclaceae/metabolismo , Transcriptoma
4.
J Neurosci ; 38(8): 2015-2028, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29352045

RESUMO

In the mammalian retina, horizontal cells receive glutamatergic inputs from many rod and cone photoreceptors and return feedback signals to them, thereby changing photoreceptor glutamate release in a light-dependent manner. Horizontal cells also provide feedforward signals to bipolar cells. It is unclear, however, how horizontal cell signals also affect the temporal, spatial, and contrast tuning in retinal output neurons, the ganglion cells. To study this, we generated a genetically modified mouse line in which we eliminated the light dependency of feedback by deleting glutamate receptors from mouse horizontal cells. This genetic modification allowed us to investigate the impact of horizontal cells on ganglion cell signaling independent of the actual mode of feedback in the outer retina and without pharmacological manipulation of signal transmission. In control and genetically modified mice (both sexes), we recorded the light responses of transient OFF-α retinal ganglion cells in the intact retina. Excitatory postsynaptic currents (EPSCs) were reduced and the cells were tuned to lower temporal frequencies and higher contrasts, presumably because photoreceptor output was attenuated. Moreover, receptive fields of recorded cells showed a significantly altered surround structure. Our data thus suggest that horizontal cells are responsible for adjusting the dynamic range of retinal ganglion cells and, together with amacrine cells, contribute to the center/surround organization of ganglion cell receptive fields in the mouse.SIGNIFICANCE STATEMENT Horizontal cells represent a major neuronal class in the mammalian retina and provide lateral feedback and feedforward signals to photoreceptors and bipolar cells, respectively. The mode of signal transmission remains controversial and, moreover, the contribution of horizontal cells to visual processing is still elusive. To address the question of how horizontal cells affect retinal output signals, we recorded the light responses of transient OFF-α retinal ganglion cells in a newly generated mouse line. In this mouse line, horizontal cell signals were no longer modulated by light. With light response recordings, we show that horizontal cells increase the dynamic range of retinal ganglion cells for contrast and temporal changes and contribute to the center/surround organization of their receptive fields.


Assuntos
Glutamina/metabolismo , Células Ganglionares da Retina/metabolismo , Células Horizontais da Retina/metabolismo , Transmissão Sináptica/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Transgênicos
5.
Invest Ophthalmol Vis Sci ; 59(1): 561-571, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29372254

RESUMO

Purpose: Mutations in the gene encoding Gasdermin A3 (Gsdma3) have been described to cause severe skin phenotypes, including loss of sebaceous glands and alopecia, in mice. We discovered a novel C-terminal mutation in Gsdma3 in a new mouse line and characterized a less frequently reported corneal phenotype, likely caused by degeneration of Meibomian glands of the inner eyelid. Methods: We used histologic methods to evaluate the effects of the C+/H- mutation on sebaceous gland and skin morphology as well as Meibomian glands of the inner eyelid and corneal tissue. Chromosomal aberrations were excluded by karyogram analyses. The mutation was identified by Sanger sequencing of candidate genes. Results: Analyses of skin samples from affected mice confirmed the frequently reported phenotypes associated with mutations in Gsdma3: Degeneration of sebaceous glands and complete loss of pelage. Immunologic staining of corneal samples suggested an inflammatory response with signs of neovascularization in half of the affected older mice. While the corneal phenotype was observed at irregular time points, mainly after 6 months, its appearance coincided with a degeneration of Meibomian glands in the eyelids of affected animals. Conclusions: The mutation described herein is associated with inflammation and neovascularization of corneal tissue. Simultaneous degeneration of Meibomian glands in affected animals suggested a change in tear-film composition as the underlying cause for the corneal phenotype. Our data further support that different pathogenic mechanisms underlie some of the reported mutations in Gsdma3.


Assuntos
Alopecia/genética , Neovascularização da Córnea/genética , Ceratite/genética , Mutação , Proteínas/genética , Alopecia/diagnóstico , Animais , Neovascularização da Córnea/diagnóstico , Doenças Palpebrais/patologia , Amplificação de Genes , Hibridização in Situ Fluorescente , Ceratite/diagnóstico , Glândulas Tarsais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Linhagem , Glândulas Sebáceas/patologia , Análise de Sequência de DNA , Pele/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...