Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
HardwareX ; 17: e00501, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38192608

RESUMO

The electrospinning method is increasingly in demand due to its capability to produce fibers in the nanometer to micrometer range, with applications in diverse fields including biomedical, filtration, energy storage, and sensing. Many of these applications demand control over fiber layout and diameter. However, a standard flat plate collector yields random fibers with limited control over diameter and density. Other viable solutions offering a higher level of control are either scarce or substantially expensive, impeding the accessibility of this vital technique. This study addresses the challenge by designing an affordable laboratory-scale electrospinning setup with interchangeable collectors, enabling the creation of targeted fibers from random, aligned, and coiled. The collectors include the standard flat plate and two additional designs, which are a rotating drum and a spinneret tip collector. The rotating drum collector has adjustable speed control to collect aligned fibers and exhibits stability even at high rotational speeds. The spinneret tip collector was designed to produce helically coiled fibers. The setup was validated by directed fiber formation using polycaprolactone (PCL), a biodegradable and FDA-approved polymer. Overall, the uniqueness of the design lies in its affordability, modifiability, and replicability using readily available materials, thus extending the reach of the electrospinning technique.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...