Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 48(25): 4617-20, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19437520

RESUMO

Branching out: The mobility of linear polymers changes upon branching, which has a pronounced effect on processability and drawability. Regularly branched model polyolefins were studied by advanced solid-state NMR spectroscopy, and twist defects around the branches in the crystalline regions are identified. For lower branch content, the twisting motions are decoupled; for higher content, collective motion is found (see picture).

2.
J Am Chem Soc ; 126(36): 11238-46, 2004 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-15355105

RESUMO

A structural investigation of precise ethylene/1-butene (EB) copolymers has been completed using step polymerization chemistry. The synthetic methodology needed to generate four model copolymers is described; their primary and higher level structure is characterized. The copolymers possess an ethyl branch on every 9th, 15th, and 21st carbon along the backbone of linear polyethylene. Melting points and heats of fusion decrease with increased branch frequency. Differential scanning calorimetry and infrared spectroscopy show highly disordered crystal structures favoring ethyl branch inclusion. On the other hand, the EB copolymers contain high concentrations of kink and gauche defects independent of branch frequency. These model copolymers are compared with random copolymers produced using traditional chain chemistry and previously synthesized ADMET EP copolymers.

3.
J Am Chem Soc ; 125(8): 2228-40, 2003 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-12590552

RESUMO

The structure of random ethylene/propylene (EP) copolymers has been modeled using step polymerization chemistry. Six ethylene/propylene model copolymers have been prepared via acyclic diene metathesis (ADMET) polymerization and characterized for primary and higher level structure using in-depth NMR, IR, DSC, WAXD, and GPC analysis. These copolymers possess 1.5, 7.1, 13.6, 25.0, 43.3, and 55.6 methyl branches per 1000 carbons. Examination of these macromolecules by IR and WAXD analysis has demonstrated the first hexagonal phase in EP copolymers containing high ethylene content (90%) without the influence of sample manipulation (temperature, pressure, or radiation). Thermal behavior studies have shown that the melting point and heat of fusion decrease as the branch content increases. Further, comparisons have been made between these random ADMET EP copolymers, random EP copolymers made by typical chain addition techniques, and precisely branched ADMET EP copolymers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...