Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 344: 123303, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38199486

RESUMO

Neonicotinoid insecticides are among the most used insecticides and their residues are frequently found in surface water due to their persistence and mobility. Neonicotinoid insecticides exhibit toxicity to a wide range of aquatic invertebrates at environmentally relevant levels, and therefore their contamination in surface water is of significant concern. In this study, we investigated the spatiotemporal distribution of six neonicotinoids in a large wetland system, the Prado Wetlands, in Southern California, and further evaluated the wetlands' efficiency at removing these insecticides. Total neonicotinoid concentrations in water ranged from 3.17 to 46.9 ng L-1 at different locations within the wetlands, with imidacloprid and dinotefuran among the most detected. Removal was calculated based on concentrations as well as mass flux. The concentration-based removal values for a shallow pond (vegetation-free), moderately vegetated cells, densely vegetated cells, and the entire wetland train were 16.9%, 34.2%, 90.2%, and 61.3%, respectively. Principal component analysis revealed that pH and temperature were the primary factors affecting neonicotinoids removal. Results from this study demonstrated the ubiquitous presence of neonicotinoids in surface water impacted by urban runoff and wastewater effluent and highlighted the efficiency of wetlands in removing these trace contaminants due to concerted effects of uptake by wetland plants, photolysis, and microbial degradation.


Assuntos
Inseticidas , Poluentes Químicos da Água , Inseticidas/toxicidade , Áreas Alagadas , Poluentes Químicos da Água/análise , Neonicotinoides/toxicidade , Nitrocompostos , Água
2.
Environ Pollut ; 340(Pt 1): 122733, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37875189

RESUMO

Surface water runoff can transport contaminants offsite to downstream aquatic ecosystems. The prevalence of impervious surfaces in urban areas enhances surface runoff and contributes to contamination of urban surface streams. Urban areas have complex drainage systems for the conveyance of drainage water, however, there is a dearth of information on the distribution of contaminants within storm drain system structures. Pyrethroid insecticides are among the most used insecticides in urban areas, and trace levels of pyrethroids are known to exert toxicity to aquatic invertebrates. To investigate pyrethroid occurrence and distribution throughout an urban drainage system, samples of water, sediment, algae, and biofilm were collected from catch basins, open channels, and outfalls in Los Angeles County, California, during the dry season. From 3 catch basins, 7 open channels, and 7 outfalls, a total of 28 water samples, 4 sediment samples, 8 algae samples, and 4 biofilm samples were collected and analyzed. Pyrethroid concentrations above the reporting limit were detected in 89% of water samples and all sediment, algae, and biofilm samples, with bifenthrin and cyfluthrin being the most frequently detected compounds. The median total pyrethroid concentrations in water, sediments, algae, and biofilms were 27 ng/L, 88 ng/g, 356 ng/g, and 3556 ng/g, respectively. Bifenthrin concentrations in catch basins were found to be significantly higher than those in open channels or outfalls. Significant correlations were found for various metrics, including between pyrethroid partitioning in water samples and total suspended solids. These findings highlight the role of underground catch basins as a sink as well as a secondary source for contaminants such as pyrethroid insecticides. Prevention of the input of these urban originated contaminants to catch basins is crucial for protecting the water quality of urban surface waters.


Assuntos
Inseticidas , Piretrinas , Poluentes Químicos da Água , Animais , Inseticidas/toxicidade , Ecossistema , Poluentes Químicos da Água/análise , Piretrinas/toxicidade , Sedimentos Geológicos/química
3.
Environ Int ; 170: 107612, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36347118

RESUMO

Contaminants of emerging concern (CECs) as well as their transformation products (TPs) are often found in treated wastewater and biosolids, raising concerns about their environmental risks. Small changes in chemical structure, such as the addition or loss of a methyl group, as the result of methylation or demethylation reaction, may significantly alter a chemical's physicochemical properties. In this study, we evaluated the difference in accumulation and translocation between four CECs and their respective methylated or demethylated derivatives in plant models. Suspended Arabidopsis thaliana cell culture and wheat seedlings were cultivated in nutrient solutions containing individual compounds at 1 mg/L. The methylated counterparts were generally more hydrophobic and showed comparative or greater accumulation in both plant models. For example, after 1 h incubation, methylparaben was found in A. thaliana cells at levels two orders of magnitude greater than demethylated methylparaben. In contrast, the demethylated counterparts, especially those with the addition of a hydroxyl group after demethylation, showed decreased plant uptake and limited translocation. For example, acetaminophen and demethylated naproxen were not detected in the shoots of wheat seedlings after hydroponic exposure. Results from this study suggest that common transformations such as methylation and demethylation may affect the environmental fate of CECs, and should be considered to obtain a more comprehensive understanding of risks of CECs in the environment.

4.
Environ Pollut ; 314: 120220, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36152708

RESUMO

Pesticide contamination is a threat to many aquatic habitats, and runoff from residential homes is a major contributor of these chemicals in urban surface streams and estuaries. Improved understanding of their fate and transport can help identify areas of concern for monitoring and management. In many urban areas, runoff water congregates in numerous underground catch basins before draining into the open environment; however, at present essentially no information is available on pesticide presence in these systems. In this study, we collected water samples from a large number of underground urban catch basins in different regions of California during the active pest management season to determine the occurrence and profile of the widely used pyrethroid insecticides. Detectable levels of pyrethroids were found in 98% of the samples, and the detection frequency of individual pyrethroids ranged from no detection for fenpropathrin to 97% for bifenthrin. In the aqueous phase, total pyrethroid concentrations ranged from 3 to 726 ng/L, with a median value of 32 ng/L. Pyrethroids were found to be enriched on suspended solids, with total concentrations ranging from 42 to 93,600 ng/g and a median value of 2,350 ng/g. In approximately 89% of the samples, whole water concentrations of bifenthrin were predicted to have toxic units >1 for sensitive aquatic invertebrates. The high detection frequency of bifenthrin and overall pyrethroid concentrations, especially for particle-bound residues, suggest that underground urban catch basins constitute an important secondary source for extended and widespread contamination of downstream surface waters by pesticides such as pyrethroids in urban regions.


Assuntos
Inseticidas , Praguicidas , Piretrinas , Poluentes Químicos da Água , Inseticidas/toxicidade , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Piretrinas/toxicidade , Praguicidas/análise , Água
5.
Sci Total Environ ; 773: 144708, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33582339

RESUMO

Conflicts often exist between the use of pesticides for public health protection and organic farming. A prominent example is the use of insecticides for mosquito control in rice fields designated for organic farming. Rice fields, with static water and other conducive conditions, are favorable mosquito habitats. Best management practices are urgently needed to ensure the integrity of organic farming while addressing the need for public health protection. In this study, we evaluated aerial ultra-low-volume (ULV) applications of two classes of mosquito adulticides, pyrethrins and organophosphates, and their deposition and residues on rice plants throughout an active growing season in the Sacramento Valley of California. Frequent applications of pyrethrin synergized with piperonyl butoxide (PBO) and rotating applications of synergized pyrethrins and naled, an organophosphate, were carried out on two large blocks of rice fields. Aerial ULV application of either synergized pyrethrins or naled was able to generate uniform droplets above the fields with high efficacy for mosquito control. Rice leaf samples were collected before and after a subset of applications, and rice grains were sampled at harvest. Frequent applications of synergized pyrethrins resulted in some accumulation of the synergist PBO on rice leaves, but pyrethrins and naled dissipated rapidly from the leaves after each application with no noticeable accumulation over repeated applications. At harvest, no detectable residues of the pesticides or PBO were found in the rice grains. The absence of pesticide residues in the rice grains at harvest suggested that the ULV aerial application led to deposition of only very low levels of residues on rice plants during the growing season. When coupled with the short persistence and/or poor mobility of the insecticides, such applications resulted in negligible pesticide residues in rice grains.


Assuntos
Inseticidas , Oryza , Resíduos de Praguicidas , Piretrinas , Controle de Mosquitos , Agricultura Orgânica , Butóxido de Piperonila , Piretrinas/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...