Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(51): 36035-36047, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38090066

RESUMO

Development and discovery of new antimalarial drugs are needed to overcome the multi-resistance of Plasmodium parasites to commercially available drugs. Modifying the substitutions on the amine groups has been shown to increase antimalarial activities and decrease cross-resistance with chloroquine. In this study, we have synthesized several chalcone derivatives via the substitution of aminoalkyl groups into the aromatic chalcone ring using the Mannich-type reaction. The chalcone derivatives were evaluated for their antimalarial properties against Plasmodium knowlesi A1H1 and P. falciparum 3D7, as well as their molecular docking on Plasmodium falciparum dihydrofolate reductases-thymidylate synthase (PfDHFR-TS). Data from in vitro evaluation showed that chalcone Mannich-type base derivatives 2a, 2e, and 2h displayed potential antimalarial activities against P. knowlesi with EC50 of 2.64, 2.98, and 0.10 µM, respectively, and P. falciparum 3D7 with EC50 of 0.08, 2.69, and 0.15 µM, respectively. The synthesized compounds 2a, 2e, and 2h exerted high selectivity index (SI > 10) values on the A1H1 and 3D7 strains. The molecular docking analysis on PfDHFR-TS supported the in vitro assay of 2a, 2e, and 2h by displaying CDOCKER energy of -48.224, -43.292, and -45.851 kcal mol-1. Therefore, the evidence obtained here supports that PfDHFR-TS is a putative molecular target for the synthesized compound.

2.
J Clin Tuberc Other Mycobact Dis ; 21: 100203, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33294629

RESUMO

Quantitative structure-activity relationship (QSAR) and molecular docking approach were carried out to design novel anti-tuberculosis agents based on xanthone derivatives. QSAR designed new compounds were calculated by Austin Model 1 (AM1) methods and analysis of multi-linear regression (MLR). The result showed that the best model as follows: Log IC50 = 3.113 + 11.627 qC1 + 15.955 qC4 + 11.702 qC9, this result has appropriate some statistical parameters (PRESS = 2.11, r2 = 0.730, SEE = 0. 3545, R = 0.6827, FCal/FTab = 4.68), and being used to design a potential anti-tuberculosis drugs with substituted amide, sulfoxide, and carboxylate group xanthone scaffold by a number of their inhibitory concentration (IC50). The mechanism action of sulfonamide substituted on the xanthone scaffold as anti-tuberculosis was carried out using molecular docking. Docking inhibition studies were carried out on MTB C171Q receptor (4C6X.pdb) as KasA inhibitors using by the discovery studio. Based on the binding interaction showed, the sulfonamide substituted xanthone has potential being the anti-tuberculosis drugs by KasA inhibitor for target drug activity.

3.
Acta Biochim Pol ; 67(2): 219-223, 2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32559055

RESUMO

Small protein tyrosine phosphatase (PtpA) of Mycobacterium tuberculosis is attributed to the development of latent tuberculosis infection, and hence bocomes an interesting target for drug development. In this communication, inhibition of PtpA by naturally occurring fatty acids cis-2 and trans-2-eicosenoic acid is investigated. Mtb PtpA was heterologously expressed in Escherichia coli, and the activity of PtpA was inhibited by cis-2 and trans-2 eicosenoic fatty acids. Both compunds showed strong inhibition of PtpA activity with IC50 at low micromolar concentration. As comparison, trans-11-eicosenoic acid only slightly inhibit PtpA. In silico analysis confirmed the inhibition of PtpB by cis-2-eicosenoic acid by formation of several hydrogen bonds. These findings show that cis-2 and trans-2 eicosenoic fatty acids are potential candidates for latent tuberculosis inhibitors.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Descoberta de Drogas/métodos , Ácidos Graxos Monoinsaturados/metabolismo , Ácidos Graxos Monoinsaturados/farmacologia , Mycobacterium tuberculosis/enzimologia , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Proteínas Tirosina Fosfatases/metabolismo , Ácidos Graxos trans/metabolismo , Ácidos Graxos trans/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Ligação de Hidrogênio , Concentração Inibidora 50 , Tuberculose Latente/tratamento farmacológico , Tuberculose Latente/microbiologia , Ligantes , Simulação de Acoplamento Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...