Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 26(38): 8426-8434, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32364616

RESUMO

Depending on the connectivity of solubilizing oligoethylene glycol (OEG) side chains to the π-cores of amphiphilic naphthalene and perylene bisimide dyes, self-assembly in water occurs either upon heating or cooling. Herein, we show that this effect originates from differences in the enwrapping capability of the π-cores by the OEG chains. Rylene bisimides bearing phenyl substituents with three OEG chains attached directly to the hydrophobic π-cores are strongly sequestered by the OEG chains. These molecules self-assemble at elevated temperatures in an entropy-driven process according to temperature- and concentration-dependent UV/Vis spectroscopy and calorimetric dilution studies. In contrast, for rylene bisimides in which phenyl substituents with three OEG chains are attached via a methylene spacer, leading to much weaker sequestration, self-assembly originates upon cooling in an enthalpy-driven process. Our explanation for this controversial behavior is that the aggregation in the latter case is dictated by the release of "high energy water" from the hydrophobic π-surfaces as well as dispersion interactions between the π-scaffolds which drive the self-assembly in an enthalpically driven process. In contrast, for the former case we suggest that in addition to the conventional explanation of a dehydration of hydrogen-bonded water molecules from OEG units it is in particular the increase in conformational entropy of back-folded OEG side chains upon aggregation that provides the pronounced gain in entropy that drives the aggregation process. Thus, our studies revealed that a subtle change in the attachment of solubilizing substituents can switch the thermodynamic signature for the self-assembly of amphiphilic dyes in water from enthalpy- to entropy-driven.

2.
Chem Sci ; 10(40): 9358-9366, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-32110300

RESUMO

Self-assembly of amphiphilic dyes and π-systems are more difficult to understand and to control in water compared to organic solvents due to the hydrophobic effect. Herein, we elucidate in detail the self-assembly of a series of archetype bolaamphiphiles bearing a naphthalene bisimide (NBI) π-core with appended oligoethylene glycol (OEG) dendrons of different size. By utilizing temperature-dependent UV-vis spectroscopy and isothermal titration calorimetry (ITC), we have dissected the enthalpic and entropic parameters pertaining to the molecules' self-assembly. All investigated compounds show an enthalpically disfavored aggregation process leading to aggregate growth and eventually precipitation at elevated temperature, which is attributed to the dehydration of oligoethylene glycol units and their concomitant conformational changes. Back-folded conformation of the side chains plays a major role, as revealed by molecular dynamics (MD) and two dimensional NMR (2D NMR) studies, in directing the association. The sterical effect imparted by the jacketing of monomers and dimers also changes the aggregation mechanism from isodesmic to weakly anti-cooperative.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...