Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(17)2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32825268

RESUMO

The role of the Earth's gravitational and magnetic fields in the evolution and maintenance of normal processes of various animal species remains unclear. The aim of this work was to determine the effect of simulated microgravity and hypomagnetic conditions for 1, 3, and 6 h on the sperm motility of the fruit fly Drosophila melanogaster. In addition to the usual diet, the groups were administered oral essential phospholipids at a dosage of 500 mg/kg in medium. The speed of the sperm tails was determined by video recording and analysis of the obtained video files, protein content by western blotting, and cell respiration by polarography. The results indicated an increase in the speed of movement of the sperm tails after 6 h in simulated microgravity. The levels of proteins that form the axoneme of the sperm tail did not change, but cellular respiration was altered. A similar effect occurred with the administration of essential phospholipids. These results may be due to a change in the level of phosphorylation of motor proteins. Exposure to hypomagnetic conditions led to a decrease in motility after 6 h against a background of a decrease in the rate of cellular respiration due to complex I of the respiratory chain. This effect was not observed in the flies that received essential phospholipids. However, after 1 h under hypomagnetic conditions, the rate of cellular respiration also increased due to complex I, including that in the sperm of flies receiving essential phospholipids.


Assuntos
Drosophila melanogaster/citologia , Espermatozoides/citologia , Espermatozoides/fisiologia , Simulação de Ausência de Peso/métodos , Administração Oral , Animais , Respiração Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Campos Magnéticos , Masculino , Fosfolipídeos/administração & dosagem , Fosfolipídeos/farmacologia , Motilidade dos Espermatozoides , Espermatozoides/efeitos dos fármacos , Ausência de Peso
2.
Sci Rep ; 9(1): 9730, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31278362

RESUMO

To analyze the effect of gravity on the structure of germinal tissues, we examined tissues of the testes and duct deferens of mice that were exposed to space flight conditions for 21-24 days (experiment Rodent Research-4, SpaceX-10 mission, February 2017, USA). We evaluated the levels of cytoskeletal proteins, sperm-specific proteins, and epigenetic events; in particular, we evaluated levels of 5-hydroxymethylcytosine and of enzymes that regulate DNA methylation/demethylation. We did not detect changes in the levels of cytoskeletal proteins, sperm-specific proteins, DNA-methylases, DNA demethylases, DNA acetylases, or histone deacetylases. However, there were changes at the gene expression level. In particular, there was an increase in the demethylase Tet2 and a decrease in the histone deacetylase Hdac1. These gene expression changes may be of key importance during the early period of readaptation since they could lead to an increase in the expression of target genes.


Assuntos
5-Metilcitosina/análogos & derivados , Proteínas do Citoesqueleto/metabolismo , Proteínas de Ligação a DNA/genética , Histona Desacetilase 1/genética , Proteínas Proto-Oncogênicas/genética , Testículo/metabolismo , Ducto Deferente/metabolismo , 5-Metilcitosina/metabolismo , Animais , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Dioxigenases , Epigênese Genética , Regulação da Expressão Gênica , Histona Desacetilase 1/metabolismo , Histona Desacetilases/genética , Masculino , Camundongos , Especificidade de Órgãos , Proteínas Proto-Oncogênicas/metabolismo , Voo Espacial
3.
PLoS One ; 13(5): e0192643, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29768411

RESUMO

The purpose of this work was to evaluate the protein and mRNA expression levels of multiple cytoskeletal proteins in the cardiac and lung tissue of mice that were euthanized onboard the United States Orbital Segment of the International Space Station 37 days after the start of the SpaceX-4 mission (September 2014, USA). The results showed no changes in the cytoskeletal protein content in the cardiac and lung tissue of the mice, but there were significant changes in the mRNA expression levels of the associated genes, which may be due to an increase in total genome methylation. The mRNA expression levels of DNA methylases, the cytosine demethylases Tet1 and Tet3, histone acetylase and histone deacetylase did not change, and the mRNA expression level of cytosine demethylase Tet2 was significantly decreased.


Assuntos
Radiação Cósmica/efeitos adversos , Metilação de DNA/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Coração/fisiologia , Pulmão/metabolismo , Voo Espacial , Animais , Metilação de DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases , Coração/efeitos da radiação , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Pulmão/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo
4.
Biomed Res Int ; 2018: 4549294, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30627557

RESUMO

The ontogenesis and reproduction of plants cultivated aboard a spacecraft occur inside the unique closed ecological system wherein plants are subjected to serious abiotic stresses. For the first time, a comparative molecular cytogenetic analysis of Pisum sativum L. (Fabaceae) grown on board the RS ISS during the Expedition-14 and Expedition-16 and also plants of their succeeding (F1 and F2) generations cultivated on Earth was performed in order to reveal possible structural chromosome changes in the pea genome. The karyotypes of these plants were studied by multicolour fluorescence in situ hybridization (FISH) with five different repeated DNA sequences (45S rDNA, 5S rDNA, PisTR-B/1, microsatellite motifs (AG)12, and (GAA)9) as probes. A chromosome aberration was revealed in one F1 plant. Significant changes in distribution of the examined repeated DNAs in karyotypes of the "space grown" pea plants as well as in F1 and F2 plants cultivated on Earth were not observed if compared with control plants. Additional oligo-(GAA)9 sites were detected on chromosomes 6 and 7 in karyotypes of F1 and F2 plants. The detected changes might be related to intraspecific genomic polymorphism or plant cell adaptive responses to spaceflight-related stress factors. Our findings suggest that, despite gradual total trace contamination of the atmosphere on board the ISS associated with the extension of the space station operating life, exposure to the space environment did not induce serious chromosome reorganizations in genomes of the "space grown" pea plants and generations of these plants cultivated on Earth.


Assuntos
Pisum sativum/genética , Estresse Fisiológico/genética , Aberrações Cromossômicas , Cromossomos de Plantas/genética , Citogenética/métodos , DNA Ribossômico/genética , Cariótipo , Cariotipagem/métodos , Repetições de Microssatélites/genética , Voo Espacial/métodos
5.
Sci Rep ; 6: 39545, 2016 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-28004797

RESUMO

Bone loss is a serious problem in spaceflight; however, the initial action of microgravity has not been identified. To examine this action, we performed live-imaging of animals during a space mission followed by transcriptome analysis using medaka transgenic lines expressing osteoblast and osteoclast-specific promoter-driven GFP and DsRed. In live-imaging for osteoblasts, the intensity of osterix- or osteocalcin-DsRed fluorescence in pharyngeal bones was significantly enhanced 1 day after launch; and this enhancement continued for 8 or 5 days. In osteoclasts, the signals of TRAP-GFP and MMP9-DsRed were highly increased at days 4 and 6 after launch in flight. HiSeq from pharyngeal bones of juvenile fish at day 2 after launch showed up-regulation of 2 osteoblast- and 3 osteoclast- related genes. Gene ontology analysis for the whole-body showed that transcription of genes in the category "nucleus" was significantly enhanced; particularly, transcription-regulators were more up-regulated at day 2 than at day 6. Lastly, we identified 5 genes, c-fos, jun-B-like, pai-1, ddit4 and tsc22d3, which were up-regulated commonly in the whole-body at days 2 and 6, and in the pharyngeal bone at day 2. Our results suggested that exposure to microgravity immediately induced dynamic alteration of gene expression levels in osteoblasts and osteoclasts.


Assuntos
Regulação da Expressão Gênica , Osteoblastos/citologia , Osteoclastos/citologia , Transcrição Gênica , Ausência de Peso , Animais , Animais Geneticamente Modificados , Osso e Ossos/metabolismo , Peixes , Expressão Gênica , Proteínas Luminescentes/química , Oryzias/genética , Osteoblastos/metabolismo , Osteocalcina/metabolismo , Osteoclastos/metabolismo , Voo Espacial , Transcriptoma , Regulação para Cima
6.
Life Sci Space Res (Amst) ; 11: 10-17, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27993188

RESUMO

Rice seeds were exposed outside of the international space station to assess the risk of space environment exposure on gene expression associated with seed germination. The germination percentages of the space-stored and ground-stored seeds exposed for 13 months were 48 and 96% respectively. Those for 20 months were 7 and 76%, respectively. Germination was defined 3 days after imbibition, except for the space-stored seeds exposed for 20 months, which germinated 5 days after imbibition. Subsequent RNA-seq analyses of the dry seeds, germinated seeds, and roots and shoots of seedlings revealed that the mutation rates of mRNA sequences were not significantly different between space-stored and ground-stored samples exposed for 13 months and 20 months. In all, 4 and 16 transcripts of glycolysis-related genes were increased in the germinated seeds after 13-month and 20-month exposure, respectively. Also, 2 and 39 transcripts of long-lived mRNA required for germination were decreased more than 2-fold in the dry seeds after 13-month and 20-month exposure, respectively. These results suggest that damage to long-lived mRNA in seeds by a space environment delays and reduces germination.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza/crescimento & desenvolvimento , Oryza/genética , Sementes/genética , Sementes/fisiologia , Simulação de Ambiente Espacial , Meio Ambiente , Perfilação da Expressão Gênica , Germinação , Oryza/fisiologia , Sementes/crescimento & desenvolvimento , Análise de Sequência de RNA , Voo Espacial
7.
NPJ Microgravity ; 1: 15009, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-28725713

RESUMO

BACKGROUND: Orbital sensors to monitor global climate change during the next decade require low-drift rates for onboard thermometry, which is currently unattainable without on-orbit recalibration. Phase-change materials (PCMs), such as those that make up the ITS-90 standard, are seen as the most reliable references on the ground and could be good candidates for orbital recalibration. Space Dynamics Lab (SDL) has been developing miniaturized phase-change references capable of deployment on an orbital blackbody for nearly a decade. AIMS: Improvement of orbital temperature measurements for long duration earth observing and remote sensing. METHODS: To determine whether and how microgravity will affect the phase transitions, SDL conducted experiments with ITS-90 standard material (gallium, Ga) on the International Space Station (ISS) and compared the phase-change temperature with earth-based measurements. The miniature on-orbit thermal reference (MOTR) experiment launched to the ISS in November 2013 on Soyuz TMA-11M with the Expedition 38 crew and returned to Kazakhstan in March 2014 on the Soyuz TMA-10 spacecraft. RESULTS: MOTR tested melts and freezes of Ga using repeated 6-h cycles. Melt cycles obtained on the ground before and after launch were compared with those obtained on the ISS. CONCLUSIONS: To within a few mK uncertainty, no significant difference between the melt temperature of Ga at 1 g and in microgravity was observed.

8.
PLoS One ; 9(8): e104830, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25133741

RESUMO

After a 16-year hiatus, Russia has resumed its program of biomedical research in space, with the successful 30-day flight of the Bion-M 1 biosatellite (April 19-May 19, 2013). The principal species for biomedical research in this project was the mouse. This paper presents an overview of the scientific goals, the experimental design and the mouse training/selection program. The aim of mice experiments in the Bion-M 1 project was to elucidate cellular and molecular mechanisms, underlying the adaptation of key physiological systems to long-term exposure in microgravity. The studies with mice combined in vivo measurements, both in flight and post-flight (including continuous blood pressure measurement), with extensive in vitro studies carried out shortly after return of the mice and in the end of recovery study. Male C57/BL6 mice group housed in space habitats were flown aboard the Bion-M 1 biosatellite, or remained on ground in the control experiment that replicated environmental and housing conditions in the spacecraft. Vivarium control groups were used to account for housing effects and possible seasonal differences. Mice training included the co-adaptation in housing groups and mice adaptation to paste food diet. The measures taken to co-adapt aggressive male mice in housing groups and the peculiarities of "space" paste food are described. The training program for mice designated for in vivo studies was broader and included behavioral/functional test battery and continuous behavioral measurements in the home-cage. The results of the preliminary tests were used for the selection of homogenous groups. After the flight, mice were in good condition for biomedical studies and displayed signs of pronounced disadaptation to Earth's gravity. The outcomes of the training program for the mice welfare are discussed. We conclude that our training program was effective and that male mice can be successfully employed in space biomedical research.


Assuntos
Voo Espacial , Adaptação Fisiológica , Animais , Pesquisa Biomédica , Ingestão de Alimentos , Abrigo para Animais , Masculino , Camundongos Endogâmicos C57BL , Condicionamento Físico Animal , Projetos de Pesquisa , Federação Russa , Ausência de Peso
9.
BMC Plant Biol ; 14: 4, 2014 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-24393219

RESUMO

BACKGROUND: Spaceflight environment have been shown to generate reactive oxygen species (ROS) and induce oxidative stress in plants, but little is known about the gene expression of the ROS gene network in plants grown in long-term spaceflight. The molecular response and adaptation to the spaceflight environment of Mizuna plants harvested after 27 days of cultivation onboard the International Space Station (ISS) were measured using genome-wide mRNA expression analysis (mRNA-Seq). RESULTS: Total reads of transcripts from the Mizuna grown in the ISS as well as on the ground by mRNA-Seq showed 8,258 and 14,170 transcripts up-regulated and down-regulated, respectively, in the space-grown Mizuna when compared with those from the ground-grown Mizuna. A total of 20 in 32 ROS oxidative marker genes were up-regulated, including high expression of four hallmarks, and preferentially expressed genes associated with ROS-scavenging including thioredoxin, glutaredoxin, and alternative oxidase genes. In the transcription factors of the ROS gene network, MEKK1-MKK4-MPK3, OXI1-MKK4-MPK3, and OXI1-MPK3 of MAP cascades, induction of WRKY22 by MEKK1-MKK4-MPK3 cascade, induction of WRKY25 and repression of Zat7 by Zat12 were suggested. RbohD and RbohF genes were up-regulated preferentially in NADPH oxidase genes, which produce ROS. CONCLUSIONS: This large-scale transcriptome analysis revealed that the spaceflight environment induced oxidative stress and the ROS gene network activation in the space-grown Mizuna. Among transcripts altered in expression by space conditions, some were common genes response to abiotic and biotic stress. Furthermore, certain genes were exclusively up-regulated in Mizuna grown on the ISS. Surprisingly, Mizuna grew in space normally, as well as on the ground, demonstrating that plants can acclimate to long-term exposure in the spaceflight environment by reprogramming the expression of the ROS gene network.


Assuntos
Brassica rapa/metabolismo , Voo Espacial , Regulação da Expressão Gênica de Plantas , Espécies Reativas de Oxigênio/metabolismo
10.
Biosci Biotechnol Biochem ; 74(7): 1479-82, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20622437

RESUMO

The gene expression and enzyme activity of superoxide dismutase, catalase, and ascorbate peroxidase in the space-grown barley were not significantly different from those of the ground-grown barley. Cu2+ reducing and radical scavenging activities in an extract of the space-grown barley were lower than those of the ground-grown barley by 0.7 fold, suggesting that the space environment does not induce oxidative stress, and reduces antioxidant capacity in plants.


Assuntos
Antioxidantes/metabolismo , Meio Ambiente Extraterreno , Hordeum/crescimento & desenvolvimento , Hordeum/metabolismo , Estresse Oxidativo , Congelamento , Regulação Enzimológica da Expressão Gênica/efeitos da radiação , Hordeum/genética , Hordeum/efeitos da radiação , Estresse Oxidativo/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...