Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Res ; 258: 60-71, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36921796

RESUMO

DICER1 mutations predispose to increased risk for various cancers, particularly pleuropulmonary blastoma (PPB), the commonest lung malignancy of childhood. There is a paucity of directly actionable molecular targets as these tumors are driven by loss-of-function mutations of DICER1. Therapeutic development for PPB is further limited by a lack of biologically and physiologically-representative disease models. Given recent evidence of Dicer's role as a haploinsufficient tumor suppressor regulating RNA polymerase I (Pol I), Pol I inhibition could abrogate mutant Dicer-mediated accumulation of stalled polymerases to trigger apoptosis. Hence, we developed a novel subpleural orthotopic PPB patient-derived xenograft (PDX) model that retained both RNase IIIa and IIIb hotspot mutations and recapitulated the cardiorespiratory physiology of intra-thoracic disease, and with it evaluated the tolerability and efficacy of first-in-class Pol I inhibitor CX-5461. In PDX tumors, CX-5461 significantly reduced H3K9 di-methylation and increased nuclear p53 expression, within 24 hours' exposure. Following treatment at the maximum tolerated dosing regimen (12 doses, 30 mg/kg), tumors were smaller and less hemorrhagic than controls, with significantly decreased cellular proliferation, and increased apoptosis. As demonstrated in a novel intrathoracic tumor model of PPB, Pol I inhibition with CX-5461 could be a tolerable and clinically-feasible therapeutic strategy for mutant Dicer tumors, inducing antitumor effects by decreasing H3K9 methylation and enhancing p53-mediated apoptosis.


Assuntos
Blastoma Pulmonar , RNA Polimerase I , Humanos , RNA Polimerase I/genética , RNA Polimerase I/metabolismo , Proteína Supressora de Tumor p53/genética , Blastoma Pulmonar/genética , Blastoma Pulmonar/metabolismo , Blastoma Pulmonar/patologia , Carcinogênese , Ribonuclease III/genética , Ribonuclease III/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo
2.
BMC Neurol ; 20(1): 415, 2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33187494

RESUMO

BACKGROUND: Germinomas (IG) account for up to 50% of all intracranial germ cell tumours. These tumours are reputed to be more prevalent in Oriental populations in comparison to Western cohorts. Biological characteristics of IG in other ethnic groups are unknown. Singapore is a multi-ethnic country with diverse cultures. Owing to inter-racial heterogeneity, the authors hypothesize there are molecular differences between paediatric IG patients in our local population. The aims of this study are exploratory: firstly, to identify molecular characteristics in this tumour type and circulating CSF unique to different racial cohorts; and next, to corroborate our findings with published literature. METHODS: This is a single-institution, retrospective study of prospectively collected data. Inclusion criteria encompass all paediatric patients with histologically confirmed IG. Excess CSF and brain tumour tissues are collected for molecular analysis. Tumour tissues are subjected to a next generation sequencing (NGS) targeted panel for KIT and PDGRA. All CSF samples are profiled via a high-throughput miRNA multiplexed workflow. Results are then corroborated with existing literature and public databases. RESULTS: In our cohort of 14 patients, there are KIT exon variants in the tumour tissues and CSF miRNAs corroborative with published studies. Separately, there are also KIT exon variants and miRNAs not previously highlighted in IG. A subgroup analysis demonstrates differential CSF miRNAs between Chinese and Malay IG patients. CONCLUSION: This is the first in-depth molecular study of a mixed ethnic population of paediatric IGs from a Southeast Asian cohort. Validation studies are required to assess the relevance of novel findings in our study.


Assuntos
Neoplasias Encefálicas , Germinoma , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Criança , Germinoma/genética , Germinoma/metabolismo , Humanos , MicroRNAs/líquido cefalorraquidiano , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-kit/genética , Estudos Retrospectivos , Singapura
3.
Cancer Sci ; 111(10): 3780-3792, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32777141

RESUMO

Ex vivo evaluation of personalized models can facilitate individualized treatment selection for patients, and advance the discovery of novel therapeutic options. However, for embryonal malignancies, representative primary cultures have been difficult to establish. We developed patient-derived cell cultures (PDCs) from chemo-naïve and post-treatment neuroblastoma tumors in a consistent and efficient manner, and characterized their in vitro growth dynamics, histomorphology, gene expression, and functional chemo-response. From 34 neuroblastoma tumors, 22 engrafted in vitro to generate 31 individual PDC lines, with higher engraftment seen with metastatic tumors. PDCs displayed characteristic immunohistochemical staining patterns of PHOX2B, TH, and GD2 synthase. Concordance of MYCN amplification, 1p and 11q deletion between PDCs and patient tumors was 83.3%, 72.7%, and 80.0% respectively. PDCs displayed a predominantly mesenchymal-type gene expression signature and showed upregulation of pro-angiogenic factors that were similarly enriched in culture medium and paired patient serum samples. When tested with standard-of-care cytotoxics at human Cmax -equivalent concentrations, MYCN-amplified and non-MYCN-amplified PDCs showed a differential response to cyclophosphamide and topotecan, which mirrored the corresponding patients' responses, and correlated with gene signatures of chemosensitivity. In this translational proof-of-concept study, early-phase neuroblastoma PDCs enriched for the mesenchymal cell subpopulation recapitulated the individual molecular and phenotypic profile of patient tumors, and highlighted their potential as a platform for individualized ex vivo drug-response testing.


Assuntos
Proteínas de Homeodomínio/genética , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/tratamento farmacológico , Fatores de Transcrição/genética , Tirosina 3-Mono-Oxigenase/genética , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Ciclofosfamida/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Xenoenxertos , Humanos , Camundongos , N-Acetilgalactosaminiltransferases/genética , Neuroblastoma/genética , Neuroblastoma/patologia , Medicina de Precisão , Topotecan/farmacologia , Transcriptoma/genética
4.
Oncotarget ; 9(18): 14175-14192, 2018 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-29581836

RESUMO

Hippo pathway target, YAP has emerged as an important player in solid tumor progression. Here, we identify RUNX1 and RUNX3 as novel negative regulators of oncogenic function of YAP in the context of breast cancer. RUNX proteins are one of the first transcription factors identified to interact with YAP. RUNX1 or RUNX3 expression abrogates YAP-mediated pro-tumorigenic properties of mammary epithelial cell lines in an interaction dependent manner. RUNX1 and RUNX3 inhibit YAP-mediated migration and stem-ness properties of mammary epithelial cell lines by co-regulating YAP-mediated gene expression. Analysis of whole genome expression profiles of breast cancer samples revealed significant co-relation between YAP-RUNX1/RUNX3 expression levels and survival outcomes of breast cancer patients. High RUNX1/RUNX3 expression proved protective towards YAP-dependent patient survival outcomes. High YAP in breast cancer patients' expression profiles co-related with EMT and stem-ness gene signature enrichment. High RUNX1/RUNX3 expression along with high YAP reflected lower enrichment of EMT and stem-ness signatures. This antagonistic activity of RUNX1 and RUNX3 towards oncogenic function of YAP identified in mammary epithelial cells as well as in breast cancer expression profiles gives a novel mechanistic insight into oncogene-tumor suppressor interplay in the context of breast cancer progression. The novel interplay between YAP, RUNX1 and RUNX3 and its significance in breast cancer progression can serve as a prognostic tool to predict cancer recurrence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...