Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 188(6): 327, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27147240

RESUMO

The function of trees in reducing nutrient migration to groundwaters in cultivated areas, under Mediterranean climate conditions, is tested. Three cultivated fields were monitored for two cultivation periods. The common characteristic of the three fields was that on one side, they bordered with a poplar tree field. Four different crops were cultivated, and two cultivation periods were monitored. Based on the number of fields (i.e., three) and the cultivation periods (i.e., two), six different conditions (systems) were studied with four crops (i.e., sunflower, cotton, rapeseed, and corn). Soil samples were collected in all systems at the beginning, the middle, and the end of the cultivation period at various sampling sites (i.e., various distances from the tree row) and at various depths, and were analyzed in the laboratory for the determination of ΝΟ3-Ν and P-Olsen. In all systems, the greatest concentration of P-Olsen was measured in the surface layers (0-5, 10-15, and 30-35 cm) and was gradually decreased in the deeper layers (55-60 and 75-80 cm) indicating that P mobility is low. The ΝΟ3-Ν concentration in the deeper layers (55-60 and 75-80 cm) at all sampling sites was equal to or greater than that of the surface layers, indicating that ΝΟ3-Ν has high mobility in soils. At the sampling sites in the soil zone near the tree row, the ΝΟ3-Ν concentration in the deeper layers was lower than that of the surface, indicating that the tree root system takes up nutrients which otherwise would move toward the water table. There was also a reduction observed of the depth-averaged P-Olsen and ΝΟ3-Ν concentrations at the soil zone at a distance of 2.0-3.5 m from the tree row compared to locations more distant from the trees; this reduction ranged between 15 and 50 % and 36 and 54 %, respectively. The results indicate that planting of trees in cultivated fields can contribute to the reduction of nitrate pollution of groundwaters.


Assuntos
Nitratos/análise , Fósforo/análise , Solo/química , Árvores , Poluição da Água/prevenção & controle , Clima , Produtos Agrícolas , Monitoramento Ambiental , Água Subterrânea
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...