Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 40(17): 8781-8790, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38444249

RESUMO

We present the results of a systematic study elucidating the role that dynamic surface tension has on the spreading and splashing dynamics of surfactant-laden droplets during the impact on hydrophobic substrates. Using four different surfactants at various concentrations, we generated a range of solutions whose dynamic surface tension were characterized to submillisecond timescales using maximum bubble-pressure tensiometry. Impact dynamics of these solutions were observed by high-speed imaging with subsequent quantitative image processing to determine the impact parameters (droplet size and speed) and dynamic wetting properties (dynamic contact angle). Droplets were slowly formed by dripping to allow the surfactants to achieve equilibrium at the free surface prior to impact. Our results indicate that while only the fastest surfactants appreciably affect the maximum spreading diameter, the droplet morphology during the initial stages of spreading is different to water for all surfactant solutions studied. Moreover, we show that surfactant-laden droplets splash more easily than pure liquid (water). Based on the association of the splashing ratio to our tensiometry measurements, we are able to predict the effective surface tension acting during splashing. These results suggest that droplet splashing characteristics are primarily defined by the stretching of the equilibrated droplet free surface.

2.
J Colloid Interface Sci ; 615: 227-235, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35134478

RESUMO

Droplets impacting dry solid substrates often splash above a certain threshold impact velocity. We hypothesise that substrate curvature alters splashing thresholds due to a modification to the lift force acting on the lamella at the point of breakup. We have undertaken high-speed imaging experiments of millimetric droplets impacting convex and concave surfaces to establish splashing thresholds and dynamics across a wide range of substrate geometries and impact conditions. Our findings indicate that the tendency of droplets to splash is proportional to the reciprocal of the substrate's radius of curvature, independent of whether the substrate is convex or concave, with it being harder for droplets to splash on small spheres. Moreover, we consistently parameterise the axisymmetric splashing threshold across all curved substrate geometries via a modification to the well-known splashing ratio. Finally, the splashing dynamics resulting from initial asymmetry between the impacting droplet and curved substrate are also elucidated.

3.
Langmuir ; 36(32): 9596-9607, 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32787133

RESUMO

The internal dynamics during the axisymmetric coalescence of an initially static free droplet and a sessile droplet of the same fluid are studied using both laboratory experiments and numerical simulations. A high-speed camera captured internal flows from the side, visualized by adding a dye to the free droplet. The numerical simulations employ the volume of fluid method, with the Kistler dynamic contact angle model to capture substrate wettability, quantitatively validated against the image-processed experiments. It is shown that an internal jet can be formed when capillary waves reflected from the contact line create a small tip with high curvature on top of the coalesced droplet that propels fluid toward the substrate. Jet formation is found to depend on the substrate wettability, which influences capillary wave reflection; the importance of the advancing contact angle subordinated to that of the receding contact angle. It is systematically shown via regime maps that jet formation is enhanced by increasing the receding contact angle and by decreasing the droplet viscosity. Jets are seen at volume ratios very different from those accepted for free droplets, showing that a substrate with appropriate wettability can improve the efficiency of fluid mixing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...