Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IBRO Neurosci Rep ; 13: 127-135, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35989697

RESUMO

Stroke is a leading cause of death and disability around the world. To date, the majority of pre-clinical research has been performed using male lab animals and results are commonly generalized to both sexes. In clinical stoke cases females have a higher incidence of ischemic stroke and poorer outcomes, compared to males. Best practices for improving translatability of findings for stroke, encourage the use of both sexes in studies. Since estrogen and progesterone have recognized neuroprotective effects, it is important to compare the size, severity and biochemical composition of the brain tissue following stroke in female and male animal models. In this study a photothrombotic focal stroke was induced in male and female mice. Vaginal secretions were collected twice daily to track the stage of estrous. Mice were euthanized at 24 h post-stroke. Histological staining, Fourier transform infrared imaging and X-ray fluorescence imaging were performed to better define the size and metabolic markers in the infarct core and surrounding penumbra. Our results show while the female mice had a significantly lower body mass than males, the cross-sectional area of the brain and the size of infarct and penumbra were not significantly different between the groups. In addition to the general expected sex-linked differences of altered NADH levels between males and females, estrus females had significantly elevated glycogen in the penumbra compared with males and total phosphorus levels were noted to be higher in the penumbra of estrus females. Elevated glycogen reserves in the tissue bordering the infarct core in females may present alternatives for improved functional recovery in females in the early post-stroke phase.

2.
Metallomics ; 14(4)2022 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-35254441

RESUMO

Hemorrhagic transformation of ischemic stroke has devastating consequences, with high mortality and poor functional outcomes. Animal models of ischemic stroke also demonstrate the potential for hemorrhagic transformation, which complicates biochemical characterization, treatment studies, and hinders poststroke functional outcomes in affected subjects. The incidence of hemorrhagic transformation of ischemic stroke in animal model research is not commonly reported. The postmortem brain of such cases presents a complex milieu of biomarkers due to the presence of healthy cells, regions of varying degrees of ischemia, dead and dying cells, dysregulated metabolites, and blood components (especially reactive Fe species released from lysed erythrocytes). To improve the characterization of hemorrhage biomarkers on an ischemic stroke background, we have employed a combination of histology, X-ray fluorescence imaging (XFI), and Fourier transform infrared (FTIR) spectroscopic imaging to assess 122 photothrombotic (ischemic) stroke brains. Rapid freezing preserves brain biomarkers in situ and minimizes metabolic artifacts due to postmortem ischemia. Analysis revealed that 25% of the photothrombotic models had clear signs of hemorrhagic transformation. The XFI and FTIR metabolites provided a quantitative method to differentiate key metabolic regions in these models. Across all hemorrhage cases, it was possible to consistently differentiate otherwise healthy tissue from other metabolically distinct regions, including the ischemic infarct, the ischemic penumbra, blood vessels, sites of hemorrhage, and a region surrounding the hemorrhage core that contained elevated lipid oxidation. Chemical speciation of deposited Fe demonstrates the presence of heme-Fe and accumulation of ferritin.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Animais , Biomarcadores , Isquemia Encefálica/complicações , Isquemia Encefálica/diagnóstico por imagem , Hemorragia/complicações , Humanos , AVC Isquêmico/diagnóstico por imagem , Imagem Multimodal , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/epidemiologia
3.
Sci Rep ; 10(1): 17868, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33082455

RESUMO

Stroke is a leading cause of long-term disability in adults and a leading cause of death in developed nations. The cascade of cellular events and signalling that occur after cerebral ischemia are complex, however, analyzing global element markers of metabolic state affords the means to monitor stroke severity, status of injury, and recovery. These markers provide a multi-parameter method for assessing changes through the post-stroke time course. We employ synchrotron-based elemental mapping to follow elemental changes in the brain at 1 h, 1-, 2-, and 3-days, and at 1-, 2-, 3-, and 4-weeks post-stroke in a photothrombotic stroke model in mice. Our analysis reveals a highly consistent metabolic penumbra that can be readily identified based on the level of dysregulated potassium and other key elements. Maps of elemental distributions are also useful to demarcate events in the cellular response to the inflammatory cascade, including ion dysregulation, recruitment of cells to the lesion, and glial scar formation.


Assuntos
AVC Isquêmico/metabolismo , Espectrometria por Raios X/métodos , Oligoelementos/metabolismo , Animais , Modelos Animais de Doenças , AVC Isquêmico/etiologia , Camundongos , Reprodutibilidade dos Testes , Tromboembolia/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...