Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 10(2): 638-653, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32015832

RESUMO

Genomic architecture and standing variation can play a key role in ecological adaptation and contribute to the predictability of evolution. In Atlantic cod (Gadus morhua), four large chromosomal rearrangements have been associated with ecological gradients and migratory behavior in regional analyses. However, the degree of parallelism, the extent of independent inheritance, and functional distinctiveness of these rearrangements remain poorly understood. Here, we use a 12K single nucleotide polymorphism (SNP) array to demonstrate extensive individual variation in rearrangement genotype within populations across the species range, suggesting that local adaptation to fine-scale ecological variation is enabled by rearrangements with independent inheritance. Our results demonstrate significant association of rearrangements with migration phenotype and environmental gradients across the species range. Individual rearrangements exhibit functional modularity, but also contain loci showing multiple environmental associations. Clustering in genetic distance trees and reduced differentiation within rearrangements across the species range are consistent with shared variation as a source of contemporary adaptive diversity in Atlantic cod. Conversely, we also find that haplotypes in the LG12 and LG1 rearranged region have diverged across the Atlantic, despite consistent environmental associations. Exchange of these structurally variable genomic regions, as well as local selective pressures, has likely facilitated individual diversity within Atlantic cod stocks. Our results highlight the importance of genomic architecture and standing variation in enabling fine-scale adaptation in marine species.

2.
Sci Adv ; 5(6): eaav2461, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31249864

RESUMO

Chromosome structural variation may underpin ecologically important intraspecific diversity by reducing recombination within supergenes containing linked, coadapted alleles. Here, we confirm that an ancient chromosomal rearrangement is strongly associated with migratory phenotype and individual genetic structure in Atlantic cod (Gadus morhua) across the Northwest Atlantic. We reconstruct trends in effective population size over the last century and reveal declines in effective population size matching onset of industrialized harvest (after 1950). We find different demographic trajectories between individuals homozygous for the chromosomal rearrangement relative to heterozygous or homozygous individuals for the noninverted haplotype, suggesting different selective histories across the past 150 years. These results illustrate how chromosomal structural diversity can mediate fine-scale genetic, phenotypic, and demographic variation in a highly connected marine species and show how overfishing may have led to loss of biocomplexity within Northern cod stock.


Assuntos
Gadus morhua/genética , Animais , Biodiversidade , Cromossomos/genética , Conservação dos Recursos Naturais/métodos , Pesqueiros , Rearranjo Gênico/genética , Variação Genética/genética , Genoma/genética , Haplótipos/genética , Heterozigoto , Homozigoto
3.
Evol Appl ; 12(4): 705-717, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30976304

RESUMO

Throughout their native range, wild Atlantic salmon populations are threatened by hybridization and introgression with escapees from net-pen salmon aquaculture. Although domestic-wild hybrid offspring have shown reduced fitness in laboratory and field experiments, consequential impacts on population abundance and genetic integrity remain difficult to predict in the field, in part because the strength of selection against domestic offspring is often unknown and context-dependent. Here, we follow a single large escape event of farmed Atlantic salmon in southern Newfoundland and monitor changes in the in-river proportions of hybrids and feral individuals over time using genetically based hybrid identification. Over a three-year period following the escape, the overall proportion of wild parr increased consistently (total wild proportion of 71.6%, 75.1% and 87.5% each year, respectively), with subsequent declines in feral (genetically pure farmed individuals originating from escaped, farmed adults) and hybrid parr. We quantify the strength of selection against parr of aquaculture ancestry and explore the genetic and demographic consequences for populations in the region. Within-cohort changes in the relative proportions of feral and F1 parr suggest reduced relative survival compared to wild individuals over the first (0.15 and 0.81 for feral and F1, respectively) and second years of life (0.26, 0.83). These relative survivorship estimates were used to inform an individual-based salmon eco-genetic model to project changes in adult abundance and overall allele frequency across three invasion scenarios ranging from short-term to long-term invasion and three relative survival scenarios. Modelling results indicate that total population abundance and time to recovery were greatly affected by relative survivorship and predict significant declines in wild population abundance under continued large escape events and calculated survivorship. Overall, this work demonstrates the importance of estimating the strength of selection against domestic offspring in the wild to predict the long-term impact of farmed salmon escape events on wild populations.

4.
Heredity (Edinb) ; 122(1): 69-80, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29773897

RESUMO

In the northwest Atlantic Ocean, sea scallop (Placopecten magellanicus) has been characterized by a latitudinal genetic cline with a breakpoint between northern and southern genetic clusters occurring at ~45°N along eastern Nova Scotia, Canada. Using 96 diagnostic single-nucleotide polymorphisms (SNPs) capable of discriminating between northern and southern clusters, we examined fine-scale genetic structure of scallops among 27 sample locations, spanning the largest geographic range evaluated in this species to date (~37-51°N). Here, we confirmed previous observations of northern and southern groups, but we show that the boundary between northern and southern clusters is not a discrete latitudinal break. Instead, at latitudes near the previously described boundary, we found unexpected patterns of fine-scale genetic structure occurring between inshore and offshore sites. Scallops from offshore sites, including St. Pierre Bank and the eastern Scotian Shelf, clustered with southern stocks, whereas inshore sites at similar latitudes clustered with northern stocks. Our analyses revealed significant genetic divergence across small spatial scales (i.e., 129-221 km distances), and that spatial structure over large and fine scales was strongly associated with temperature during seasonal periods of thermal minima. Clear temperature differences between inshore and offshore locations may explain the fine-scale structuring observed, such as why southern lineages of scallop occur at higher latitudes in deeper, warmer offshore waters. Our study supports growing evidence that fine-scale population structure in marine species is common, often environmentally associated, and that consideration of environmental and genomic data can significantly enhance the identification of marine diversity and management units.


Assuntos
Organismos Aquáticos/genética , Variação Genética , Genética Populacional , Pectinidae/genética , Animais , Organismos Aquáticos/fisiologia , Oceano Atlântico , Canadá , Ecossistema , Pectinidae/fisiologia , Polimorfismo de Nucleotídeo Único/genética , Temperatura
5.
Mol Ecol ; 27(20): 4026-4040, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30152128

RESUMO

Conservation of exploited species requires an understanding of both genetic diversity and the dominant structuring forces, particularly near range limits, where climatic variation can drive rapid expansions or contractions of geographic range. Here, we examine population structure and landscape associations in Atlantic salmon (Salmo salar) across a heterogeneous landscape near the northern range limit in Labrador, Canada. Analysis of two amplicon-based data sets containing 101 microsatellites and 376 single nucleotide polymorphisms (SNPs) from 35 locations revealed clear differentiation between populations spawning in rivers flowing into a large marine embayment (Lake Melville) compared to coastal populations. The mechanisms influencing the differentiation of embayment populations were investigated using both multivariate and machine-learning landscape genetic approaches. We identified temperature as the strongest correlate with genetic structure, particularly warm temperature extremes and wider annual temperature ranges. The genomic basis of this divergence was further explored using a subset of locations (n = 17) and a 220K SNP array. SNPs associated with spatial structuring and temperature mapped to a diverse set of genes and molecular pathways, including regulation of gene expression, immune response, and cell development and differentiation. The results spanning molecular marker types and both novel and established methods clearly show climate-associated, fine-scale population structure across an environmental gradient in Atlantic salmon near its range limit in North America, highlighting valuable approaches for predicting population responses to climate change and managing species sustainability.


Assuntos
Genética Populacional/métodos , Repetições de Microssatélites/genética , Salmo salar/genética , Animais , América do Norte , Polimorfismo de Nucleotídeo Único/genética
6.
Evol Appl ; 11(2): 153-165, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29387152

RESUMO

Genetic population assignment used to inform wildlife management and conservation efforts requires panels of highly informative genetic markers and sensitive assignment tests. We explored the utility of machine-learning algorithms (random forest, regularized random forest and guided regularized random forest) compared with FST ranking for selection of single nucleotide polymorphisms (SNP) for fine-scale population assignment. We applied these methods to an unpublished SNP data set for Atlantic salmon (Salmo salar) and a published SNP data set for Alaskan Chinook salmon (Oncorhynchus tshawytscha). In each species, we identified the minimum panel size required to obtain a self-assignment accuracy of at least 90% using each method to create panels of 50-700 markers Panels of SNPs identified using random forest-based methods performed up to 7.8 and 11.2 percentage points better than FST-selected panels of similar size for the Atlantic salmon and Chinook salmon data, respectively. Self-assignment accuracy ≥90% was obtained with panels of 670 and 384 SNPs for each data set, respectively, a level of accuracy never reached for these species using FST-selected panels. Our results demonstrate a role for machine-learning approaches in marker selection across large genomic data sets to improve assignment for management and conservation of exploited populations.

7.
Biol Lett ; 11(10)2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26490418

RESUMO

Amphibious fishes often emerse (leave water) when faced with unfavourable water conditions. How amphibious fishes cope with the risks of rising water temperatures may depend, in part, on the plasticity of behavioural mechanisms such as emersion thresholds. We hypothesized that the emersion threshold is reversibly plastic and thus dependent on recent acclimation history rather than on conditions during early development. Kryptolebias marmoratus were reared for 1 year at 25 or 30°C and acclimated as adults (one week) to either 25 or 30°C before exposure to an acute increase in water temperature. The emersion threshold temperature and acute thermal tolerance were significantly increased in adult fish acclimated to 30°C, but rearing temperature had no significant effect. Using a thermal imaging camera, we also showed that emersed fish in a low humidity aerial environment (30°C) lost significantly more heat (3.3°C min(-1)) than those in a high humidity environment (1.6°C min(-1)). In the field, mean relative humidity was 84%. These results provide evidence of behavioural avoidance of high temperatures and the first quantification of evaporative cooling in an amphibious fish. Furthermore, the avoidance response was reversibly plastic, flexibility that may be important for tropical amphibious fishes under increasing pressures from climatic change.


Assuntos
Aclimatação/fisiologia , Comportamento Animal/fisiologia , Regulação da Temperatura Corporal/fisiologia , Ciprinodontiformes/fisiologia , Temperatura Alta , Umidade , Animais , Ciprinodontiformes/crescimento & desenvolvimento , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...