Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Food ; 3(1): 11-18, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-37118482

RESUMO

Restructuring farmer-researcher relationships and addressing complexity and uncertainty through joint exploration are at the heart of On-Farm Experimentation (OFE). OFE describes new approaches to agricultural research and innovation that are embedded in real-world farm management, and reflects new demands for decentralized and inclusive research that bridges sources of knowledge and fosters open innovation. Here we propose that OFE research could help to transform agriculture globally. We highlight the role of digitalization, which motivates and enables OFE by dramatically increasing scales and complexity when investigating agricultural challenges.

2.
Trends Plant Sci ; 24(10): 892-904, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31285127

RESUMO

Increasing nitrogen fertilizer applications have sustained a growing world population in the 20th century. However, to avoid any further associated environmental damage, new sustainable agronomic practices together with new cultivars must be developed. To date the concept of nitrogen use efficiency (NUE) has been useful in quantifying the processes of nitrogen uptake and utilization, but we propose a shift in focus to consider nitrogen responsiveness as a more appropriate trait to select varieties with lower nitrogen requirements. We provide a roadmap to integrate the regulation of nitrogen uptake and assimilation into varietal selection and crop breeding programs. The overall goal is to reduce nitrogen inputs by farmers growing crops in contrasting cropping systems around the world, while sustaining yields and reducing greenhouse gas (GHG) emissions.


Assuntos
Agricultura , Fertilizantes , Produtos Agrícolas , Nitrogênio
3.
Sci Total Environ ; 666: 176-186, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-30798228

RESUMO

The properties of agricultural soils in various regions of the world are variable and can have a significant but poorly understood impact on soil nitrogen (N) transformations and nitrous oxide (N2O) emissions. For this reason, we undertook a study of gross N transformations and related N2O emissions in contrasting agricultural soils from China and the UK. Seven Chinese and three UK agricultural soils were collected for study using a 15N tracing approach. The soil pH ranged from 5.4 to 8.7, with three acidic soils collected from Jinjing, Lishu and Boghall; one neutral soil collected from Changshu, and the other six alkaline soils collected from Quzhou, Zhangye, Changwu, Jinzhong, Boxworth and Stetchworth. Our results showed that the main N transformation processes were oxidation of ammonium (NH4+) to nitrate (NO3-) (ONH4), and mineralization of organic N to NH4+. The gross autotrophic nitrification rates calculated in the three acidic soils were between 0.25 and 4.15 mg N kg-1 d-1, which were significantly lower (p < 0.05) than those in the remaining neutral and alkaline soils ranging from 6.94 to 14.43 mg N kg-1 d-1. Generally, soil pH was positively correlated (p < 0.001) with gross autotrophic nitrification rate and cumulative N2O emissions, indicating that soil pH was an important factor regulating autotrophic nitrification and N2O emissions. There was also a significant positive correlation between the gross autotrophic nitrification rate and cumulative N2O emissions, highlighting the importance of this process for producing N2O emissions in these agricultural soils under aerobic conditions. Gross NH4+ immobilization rates were very low in most soils except for the Jinjing soil with the lowest pH. In conclusion, the gross autotrophic nitrification rates and related N2O emissions were controlled by soil pH irrespectively of the soil's origin in these agricultural soils.


Assuntos
Desnitrificação , Nitrificação , Nitrogênio/química , Óxido Nitroso/análise , Solo/química , Agricultura , China , Inglaterra , Escócia
4.
J Exp Bot ; 66(8): 2293-303, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25750427

RESUMO

Root length density (RLD) was measured to 1 m depth for 17 commercial crops of winter wheat (Triticum aestivum) and 40 crops of winter oilseed rape [Brassica napus; oilseed rape (OSR)] grown in the UK between 2004 and 2013. Taking the critical RLD (cRLD) for water capture as 1cm cm(-3), RLDs appeared inadequate for full water capture on average below a depth of 0.32 m for winter wheat and below 0.45 m for OSR. These depths compare unfavourably (for wheat) with average depths of 'full capture' of 0.86 m and 0.48 m, respectively, determined for three wheat crops and one OSR crop studied in the 1970s and 1980s, and treated as references here. A simple model of water uptake and yield indicated that these shortfalls in wheat and OSR rooting compared with the reference data might be associated with shortfalls of up to 3.5 t ha(-1) and 1.2 t ha(-1), respectively, in grain yields under water-limited conditions, as increasingly occur through climate change. Coupled with decreased summer rainfall, poor rooting of modern arable crops could explain much of the yield stagnation that has been observed on UK farms since the 1990s. Methods of monitoring and improving rooting under commercial conditions are reviewed and discussed.


Assuntos
Brassica rapa/fisiologia , Produtos Agrícolas/fisiologia , Raízes de Plantas/anatomia & histologia , Triticum/fisiologia , Água/metabolismo , Brassica rapa/crescimento & desenvolvimento , Modelos Biológicos , Estações do Ano , Triticum/crescimento & desenvolvimento , Reino Unido
5.
Environ Sci Technol ; 48(12): 6523-30, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24840064

RESUMO

Society relies heavily on inorganic phosphorus (P) compounds throughout its food chain. This dependency is not only very inefficient and increasingly costly but is depleting finite global reserves of rock phosphate. It has also left a legacy of P accumulation in soils, sediments and wastes that is leaking into our surface waters and contributing to widespread eutrophication. We argue for a new, more precise but more challenging paradigm in P fertilizer management that seeks to develop more sustainable food chains that maintain P availability to crops and livestock but with reduced amounts of imported mineral P and improved soil function. This new strategy requires greater public awareness of the environmental consequences of dietary choice, better understanding of soil-plant-animal P dynamics, increased recovery of both used P and unutilized legacy soil P, and new innovative technologies to improve fertilizer P recovery. In combination, they are expected to deliver significant economic, environmental, and resource-protection gains, and contribute to future global P stewardship.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Cadeia Alimentar , Fósforo/isolamento & purificação , Solo/química , Gerenciamento de Resíduos/métodos , Conservação dos Recursos Naturais , Fertilizantes , Reciclagem
6.
J Sci Food Agric ; 94(15): 3234-40, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24668758

RESUMO

BACKGROUND: Soft-milling wheat has potential use for both grain whisky distilling and bioethanol production. Varietal comparisons over wide-ranging environments would permit assessment of both grain and alcohol yield potential and also permit the stability across environments, for these parameters, to be compared. RESULTS: For 12 varieties, analysis of variance showed highly significant effects of variety, site, season and fertiliser application on grain and alcohol yield. There were also significant interactions between these factors and, consequently, varieties varied in stability across environments as well as in mean values for the parameters assessed. Alcohol production per hectare was affected more strongly by variation in grain yield than alcohol yield, but increasing grain protein content reduced alcohol yield and, therefore, utility for grain distilling. CONCLUSION: To maximise energy production, the best varieties for bioethanol would combine high and stable grain yield with slower reduction of alcohol yield as grain protein increases. For grain distilling, where the energy balance is less important, high alcohol yield will remain the key factor. Data derived using near infrared spectroscopy can be valuable in assessing stability of quality traits across environments.


Assuntos
Biocombustíveis , Grão Comestível/crescimento & desenvolvimento , Etanol/metabolismo , Triticum/crescimento & desenvolvimento , Bebidas Alcoólicas , Destilação , Estabilidade de Medicamentos , Grão Comestível/metabolismo , Meio Ambiente , Fertilizantes , Estações do Ano , Triticum/metabolismo
7.
J Exp Bot ; 62(2): 469-86, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20952627

RESUMO

A substantial increase in grain yield potential is required, along with better use of water and fertilizer, to ensure food security and environmental protection in future decades. For improvements in photosynthetic capacity to result in additional wheat yield, extra assimilates must be partitioned to developing spikes and grains and/or potential grain weight increased to accommodate the extra assimilates. At the same time, improvement in dry matter partitioning to spikes should ensure that it does not increase stem or root lodging. It is therefore crucial that improvements in structural and reproductive aspects of growth accompany increases in photosynthesis to enhance the net agronomic benefits of genetic modifications. In this article, six complementary approaches are proposed, namely: (i) optimizing developmental pattern to maximize spike fertility and grain number, (ii) optimizing spike growth to maximize grain number and dry matter harvest index, (iii) improving spike fertility through desensitizing floret abortion to environmental cues, (iv) improving potential grain size and grain filling, and (v) improving lodging resistance. Since many of the traits tackled in these approaches interact strongly, an integrative modelling approach is also proposed, to (vi) identify any trade-offs between key traits, hence to define target ideotypes in quantitative terms. The potential for genetic dissection of key traits via quantitative trait loci analysis is discussed for the efficient deployment of existing variation in breeding programmes. These proposals should maximize returns in food production from investments in increased crop biomass by increasing spike fertility, grain number per unit area and harvest index whilst optimizing the trade-offs with potential grain weight and lodging resistance.


Assuntos
Cruzamento/métodos , Triticum/crescimento & desenvolvimento , Fotossíntese , Locos de Características Quantitativas , Reprodução , Triticum/genética , Triticum/fisiologia
8.
J Exp Bot ; 60(7): 1939-51, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19395389

RESUMO

The efficient use of fertilizer nitrogen (N) is crucial to sustainable human nutrition. All crops receive significant amounts of additional N in temperate environments, through fixation or fertilizer use. This paper reviews progress towards the efficient use of fertilizer N by winter wheat (Triticum aesitivum L.) and spring barley (Hordeum vulgare L.) in the UK, acknowledging that on-farm this is governed by economics. Recent multi-site N response experiments on old and modern varieties show that yield improvements since the 1980s have been accompanied by increases in economic optimum N amounts for wheat but not for spring barley. On-farm N use efficiency (NUE) has increased for barley because increased yields with optimum N were associated with compensatory decreases in grain N concentration, whereas on-farm NUE has not increased for wheat because grain N concentration has not changed and improvements in N capture were insufficient to make up for the increased yield. Genetic effects on NUE are shown to differ markedly depending on whether they are determined at a single N rate, as in variety trials, or with optimum N amounts. It is suggested that, in order to elicit faster improvement in NUE on farms, breeding and variety testing should be conducted at some sites with more than one level of applied N, and that grain N%, N harvest index, and perhaps canopy N ratio (kg N ha(-1) green area) should be measured more widely. It is also suggested that, instead of using empirical functions, N responses might be analysed more effectively using functions based on explanations of yield determination for which the parameters have some physiological meaning.


Assuntos
Hordeum/metabolismo , Nitrogênio/metabolismo , Triticum/metabolismo , Fertilizantes/análise , Hordeum/química , Hordeum/genética , Hordeum/crescimento & desenvolvimento , Cinética , Nitrogênio/química , Estações do Ano , Triticum/química , Triticum/genética , Triticum/crescimento & desenvolvimento
9.
Ann Bot ; 91(3): 383-90, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12547691

RESUMO

A quantitative model of wheat root systems is developed that links the size and distribution of the root system to the capture of water and nitrogen (which are assumed to be evenly distributed with depth) during grain filling, and allows estimates of the economic consequences of this capture to be assessed. A particular feature of the model is its use of summarizing concepts, and reliance on only the minimum number of parameters (each with a clear biological meaning). The model is then used to provide an economic sensitivity analysis of possible target characteristics for manipulating root systems. These characteristics were: root distribution with depth, proportional dry matter partitioning to roots, resource capture coefficients, shoot dry weight at anthesis, specific root weight and water use efficiency. From the current estimates of parameters it is concluded that a larger investment by the crop in fine roots at depth in the soil, and less proliferation of roots in surface layers, would improve yields by accessing extra resources. The economic return on investment in roots for water capture was twice that of the same amount invested for nitrogen capture.


Assuntos
Modelos Teóricos , Nitrogênio/metabolismo , Raízes de Plantas/metabolismo , Triticum/economia , Triticum/metabolismo , Água/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...