Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Med Biol ; 56(22): 7127-43, 2011 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-22025168

RESUMO

Three-dimensional (3D) soft tissue tracking using 3D ultrasound is of interest for monitoring organ motion during therapy. Previously we demonstrated feature tracking of respiration-induced liver motion in vivo using a 3D swept-volume ultrasound probe. The aim of this study was to investigate how object speed affects the accuracy of tracking ultrasonic speckle in the absence of any structural information, which mimics the situation in homogenous tissue for motion in the azimuthal and elevational directions. For object motion prograde and retrograde to the sweep direction of the transducer, the spatial sampling frequency increases or decreases with object speed, respectively. We examined the effect object motion direction of the transducer on tracking accuracy. We imaged a homogenous ultrasound speckle phantom whilst moving the probe with linear motion at a speed of 0-35 mm s⁻¹. Tracking accuracy and precision were investigated as a function of speed, depth and direction of motion for fixed displacements of 2 and 4 mm. For the azimuthal direction, accuracy was better than 0.1 and 0.15 mm for displacements of 2 and 4 mm, respectively. For a 2 mm displacement in the elevational direction, accuracy was better than 0.5 mm for most speeds. For 4 mm elevational displacement with retrograde motion, accuracy and precision reduced with speed and tracking failure was observed at speeds of greater than 14 mm s⁻¹. Tracking failure was attributed to speckle de-correlation as a result of decreasing spatial sampling frequency with increasing speed of retrograde motion. For prograde motion, tracking failure was not observed. For inter-volume displacements greater than 2 mm, only prograde motion should be tracked which will decrease temporal resolution by a factor of 2. Tracking errors of the order of 0.5 mm for prograde motion in the elevational direction indicates that using the swept probe technology speckle tracking accuracy is currently too poor to track homogenous tissue over a series of volume images as these errors will accumulate. Improvements could be made through increased spatial sampling in the elevational direction.


Assuntos
Imageamento Tridimensional/métodos , Ultrassonografia/métodos , Humanos , Movimento (Física) , Imagens de Fantasmas , Respiração , Sensibilidade e Especificidade , Transdutores , Ultrassonografia/instrumentação
2.
Phys Med Biol ; 55(12): 3363-80, 2010 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-20505224

RESUMO

We have evaluated a 4D ultrasound-based motion tracking system developed for tracking of abdominal organs during therapy. Tracking accuracy and precision were determined using a tissue-mimicking phantom, by comparing tracked motion with known 3D sinusoidal motion. The feasibility of tracking 3D liver motion in vivo was evaluated by acquiring 4D ultrasound data from four healthy volunteers. For two of these volunteers, data were also acquired whilst simultaneously measuring breath flow using a spirometer. Hepatic blood vessels, tracked off-line using manual tracking, were used as a reference to assess, in vivo, two types of automated tracking algorithm: incremental (from one volume to the next) and non-incremental (from the first volume to each subsequent volume). For phantom-based experiments, accuracy and precision (RMS error and SD) were found to be 0.78 mm and 0.54 mm, respectively. For in vivo measurements, mean absolute distance and standard deviation of the difference between automatically and manually tracked displacements were less than 1.7 mm and 1 mm respectively in all directions (left-right, anterior-posterior and superior-inferior). In vivo non-incremental tracking gave the best agreement. In both phantom and in vivo experiments, tracking performance was poorest for the elevational component of 3D motion. Good agreement between automatically and manually tracked displacements indicates that 4D ultrasound-based motion tracking has potential for image guidance applications in therapy.


Assuntos
Fígado/diagnóstico por imagem , Movimento , Imagens de Fantasmas , Respiração , Algoritmos , Humanos , Imageamento Tridimensional , Sensibilidade e Especificidade , Ultrassonografia
3.
Phys Med Biol ; 55(8): N201-10, 2010 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-20348610

RESUMO

The characteristics of an Elekta Precise treatment machine with a gating interface were investigated. Three detectors were used: a Farmer ionization chamber, a MatriXX ionization chamber array and an in-house, single pulse-measurement ionization chamber (IVC). Measurements were made of dosimetric accuracy, flatness and symmetry characteristics and duty cycle for a range of beam-on times and gating periods. Results were compared with a standard ungated delivery as a reference. For all beam-on times, down to 0.5 s, dosimetric differences were below +/-1% and flatness and symmetry parameter variations were below +/-1.5%. For the shorter beam-on times the in-house detector deviated from the other two detectors, suggesting that this device should be used in conjunction with other detectors for absolute dosimetry purposes. However, it was found to be useful for studying gated beam characteristics pulse by pulse.


Assuntos
Radioterapia/instrumentação , Radioterapia/métodos , Respiração , Tomografia Computadorizada Quadridimensional , Humanos , Movimento , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
4.
Radiother Oncol ; 93(3): 424-9, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19854526

RESUMO

INTRODUCTION: One method to overcome the problem of lung tumour movement in patients treated with radiotherapy is to restrict tumour motion with an active breathing control (ABC) device. This study evaluated the feasibility of using ABC in patients receiving radical radiotherapy for non-small cell lung cancer. METHODS: Eighteen patients, median (range) age of 66 (44-82) years, consented to the study. A training session was conducted to establish the patient's breath hold level and breath hold time. Three planning scans were acquired using the ABC device. Reproducibility of breath hold was assessed by comparing lung volumes measured from the planning scans and the volume recorded by ABC. Patients were treated with a 3-field coplanar beam arrangement and treatment time (patient on and off the bed) and number of breath holds recorded. The tolerability of the device was assessed by weekly questionnaire. Quality assurance was performed on the two ABC devices used. RESULTS: 17/18 patients completed 32 fractions of radiotherapy using ABC. All patients tolerated a maximum breath hold time >15s. The mean (SD) patient training time was 13.8 (4.8)min and no patient found the ABC very uncomfortable. Six to thirteen breath holds of 10-14 s were required per session. The mean treatment time was 15.8 min (5.8 min). The breath hold volumes were reproducible during treatment and also between the two ABC devices. CONCLUSION: The use of ABC in patients receiving radical radiotherapy for NSCLC is feasible. It was not possible to predict a patient's ability to hold breath. A minimum tolerated breath hold time of 15 s is recommended prior to commencing treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/radioterapia , Neoplasias Pulmonares/radioterapia , Respiração , Técnicas de Imagem de Sincronização Respiratória/instrumentação , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Estudos de Viabilidade , Feminino , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Movimento , Tomografia Computadorizada por Raios X
5.
Med Phys ; 35(4): 1232-40, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18491515

RESUMO

The benefits of using Synchrony Respiratory Tracking System (RTS) in conjunction with the CyberKnife robotic treatment device to treat a "breathing tumor" in an anthropomorphic, tissue-equivalent, thoracic phantom have been investigated. The following have been studied: (a) Synchrony's ability to allow the CyberKnife to deliver accurately a planned dose distribution to the free-breathing phantom and (b) the dosimetric implications when irregularities in the breathing cycle and phase differences between internal (tumor) and external (chest) motion exist in the course of one treatment fraction. The breathing phantom PULMONE (phantom used in lung motion experiments) has been used, which can imitate regular or irregular breathing patterns. The breathing traces from two patients with lung cancer have been selected as input. Both traces were irregular in amplitude, frequency, and base line. Patient B demonstrated a phase difference between internal and external motion, whereas patient A did not. The experiment was divided into three stages: In stage I-static, the treatment was delivered to the static phantom. In stage II-motion, the phantom was set to breathe, following the breathing trace of each of the two patients. Synchrony was switched off, so no motion compensation was made. In stage III-compensation, the phantom was set to breathe and Synchrony was switched on. A linear correspondence model was chosen to allow for phase differences between internal and external motion. Gafchromic EBT film was inserted in the phantom tumor to measure dose. To eradicate small errors in film alignment during readout, a gamma comparison with pass criteria of 3%/3 mm was selected. For a more quantitative approach, the percentage of pixels in each gamma map that exceeded the value of 1 (P1) was also used. For both breathing signals, the dose blurring caused by the respiratory motion of the tumor in stage II was degraded considerably compared with stage I (P1 = 15% for patient A and 8% for patient B). The motion compensation via the linear correspondence model was sufficient to provide a dose distribution that satisfied the set gamma criteria (P1=3% for patient A and 2% for patient B). Synchrony RTS has been found satisfactory in recovering the initial detail in dose distribution, for realistic breathing signals, even in the case where a phase delay between internal tumor motion and external chest displacement exists. For the signals applied here, a linear correspondence model provided an acceptable degree of motion compensation.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Neoplasias Pulmonares/radioterapia , Radiometria/métodos , Radioterapia Assistida por Computador/métodos , Mecânica Respiratória , Robótica/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Radiografia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
6.
Radiother Oncol ; 87(1): 65-73, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18267345

RESUMO

BACKGROUND: The effectiveness of ABC has been traditionally measured as the reduction in internal margin (IM) within the planning target volume (PTV). Not to overestimate the benefit of ABC, the effect of patient movement during treatment also needs to be taken into account. We determined the IM and set-up error with ABC and the effect on physical lung parameters compared to standard margins used with free breathing. We also assessed interfraction oesophageal movement to determine a planning organ at risk volume (PRV). MATERIALS AND METHODS: Two sequential studies were performed using ABC in NSCLC patients suitable for radical radiotherapy (RT). Twelve out of 14 patients in Study 1 had tumours visible fluoroscopically and had intrafraction tumour movement assessed with and without ABC. Sixteen patients were recruited to Study 2 and had interfraction tumour movement measured using ABC in a moderate deep inspiration breath-hold, of these 7 patients also had interfraction oesophageal movement recorded. Interfraction movement was assessed by CT scan prior to and in the middle and final week of RT. Displacement of the tumour centre of mass and oesophageal borders relative to the first scan provided a measure of movement. Set-up error was measured in 9 patients treated with an in-house lung board adapted for the ABC device. Combining movement and set-up errors determined PTV and PRV margins with ABC. The effect of ABC on mean lung dose (MLD), lung V20 and V13 was calculated. RESULTS: ABC in a moderate deep inspiration breath-hold was tolerated in 25 out of 30 patients (83%) in Study 1 and 2. The random contribution of periodic tumour motion was reduced by 90% in the y direction with ABC compared to free-breathing. The magnitude of motion reduction was less in the x and z direction. Combining the systematic and random set-up error in quadrature with the systematic and random intrafraction and interfraction tumour variations with ABC results in a PTV margin of 8.3mm in the x direction, 12.0mm in the y direction and 9.8mm in the z direction. There was a relative mean reduction in MLD, lung V20 and V13 of 25%, 21% and 18% with the ABC PTV compared to a free-breathing PTV. Oesophageal movement combined with set-up error resulted in an isotropic PRV of 4.7 mm. CONCLUSIONS: The reduction in PTV size with ABC resulted in an 18-25% relative reduction in physical lung parameters. PTV margin reduction has the potential to spare normal lung and allow dose-escalation if coupled with image-guided RT. The oesophageal PRV needs to be considered when irradiating central disease and is of increasing importance with altered RT fractionation and concomitant chemoradiation schedules. Further reductions in PTV and PRV may be possible if patient set-up error was minimised, confirming that attention to patient immobilisation is as important as attempts to control tumour motion.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/radioterapia , Neoplasias Pulmonares/radioterapia , Respiração , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/patologia , Feminino , Fluoroscopia , Humanos , Imobilização , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Planejamento da Radioterapia Assistida por Computador , Estatísticas não Paramétricas , Tomografia Computadorizada por Raios X
7.
Phys Med Biol ; 52(18): 5683-703, 2007 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-17804889

RESUMO

Three-dimensional (3D) soft tissue tracking is of interest for monitoring organ motion during therapy. Our goal is to assess the tracking performance of a curvilinear 3D ultrasound probe in terms of the accuracy and precision of measured displacements. The first aim was to examine the depth dependence of the tracking performance. This is of interest because the spatial resolution varies with distance from the elevational focus and because the curvilinear geometry of the transducer causes the spatial sampling frequency to decrease with depth. Our second aim was to assess tracking performance as a function of the spatial sampling setting (low, medium or high sampling). These settings are incorporated onto 3D ultrasound machines to allow the user to control the trade-off between spatial sampling and temporal resolution. Volume images of a speckle-producing phantom were acquired before and after the probe had been moved by a known displacement (1, 2 or 8 mm). This allowed us to assess the optimum performance of the tracking algorithm, in the absence of motion. 3D speckle tracking was performed using 3D cross-correlation and sub-voxel displacements were estimated. The tracking performance was found to be best for axial displacements and poorest for elevational displacements. In general, the performance decreased with depth, although the nature of the depth dependence was complex. Under certain conditions, the tracking performance was sufficient to be useful for monitoring organ motion. For example, at the highest sampling setting, for a 2 mm displacement, good accuracy and precision (an error and standard deviation of <0.4 mm) were observed at all depths and for all directions of displacement. The trade-off between spatial sampling, temporal resolution and size of the field of view (FOV) is discussed.


Assuntos
Algoritmos , Artefatos , Aumento da Imagem/instrumentação , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Ultrassonografia/instrumentação , Ultrassonografia/métodos , Movimento (Física) , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...