Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Inflamm (Lond) ; 15: 24, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30498399

RESUMO

INTRODUCTION: Lutein is a dietary constituent known to inhibit inflammation; however, its effect on nociceptive neuron-associated hyperalgesia remains to be determined. The present study therefore investigated under in vivo conditions whether administration of lutein attenuates the inflammation-induced hyperexcitability of trigeminal spinal nucleus caudalis (SpVc) neurons that is associated with mechanical hyperalgesia. RESULTS: Complete Freund's adjuvant (CFA) was injected into the whisker pads of rats to induce inflammation, and then mechanical stimulation was applied to the orofacial area to assess the threshold of escape. The mechanical threshold was significantly lower in inflamed rats compared to uninjected naïve rats, and this lowered threshold was returned to control levels by 3 days after administration of lutein (10 mg/Kg, i.p.) Also the lutein administration, inflammation-induced thickness of edema was returned to control levels. The mean increased number of cyclooxygenase-2 (Cox-2)-immunoreactive cells in the whisker pads of inflamed rats was also returned to control levels by administration with lutein. The mean discharge frequency of SpVc wide-dynamic range (WDR) neurons to both nonnoxious and noxious mechanical stimuli in inflamed rats was significantly decreased after lutein administration. In addition, the increased mean spontaneous discharge of SpVc WDR in inflamed rats was significantly decreased after lutein administration. Similarly, lutein significantly diminished noxious pinch-evoked mean after discharge frequency and occurrence in inflamed rats. Finally, lutein restored the expanded mean size of the receptive field in inflamed rats to control levels. CONCLUSION: These results together suggest that administration of lutein attenuates inflammatory hyperalgesia associated with hyperexcitability of nociceptive SpVc WDR neurons via inhibition of the peripheral Cox-2 signaling cascade. These findings support the proposed potential of lutein as a therapeutic agent in complementary alternative medicine strategies for preventing inflammatory mechanical hyperalgesia.

2.
Eur J Oral Sci ; 126(6): 458-465, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30272380

RESUMO

The present study investigated whether daily systemic administration of docosahexaenoic acid (DHA) in rats could attenuate the hyperexcitability of trigeminal spinal nucleus caudalis (SpVc) neurons associated with hyperalgesia. Inflammation was induced in rats by injecting complete Freund's adjuvant into the whisker pads. The threshold of escape from mechanical stimulation applied to the whisker pads in inflamed rats was significantly lower than that in naïve rats. The lowered mechanical threshold in the inflamed rats was returned to that in naïve rats by 3 d intraperitoneal administration of DHA. The mean discharge frequency of SpVc neurons in inflamed rats was significantly decreased after DHA administration for 3 d with both non-noxious and noxious mechanical stimuli. DHA administration also significantly decreased the increased spontaneous discharges of SpVc neurons in the inflamed rats, while DHA significantly diminished noxious pinch evoked after the discharge frequency and the expanded receptive field in the inflamed rats was returned to control levels. These results suggested that chronic administration of DHA attenuates inflammation-induced mechanical hyperalgesia associated with the suppression of the hyperexcitability of SpVc neurons. These findings support the potential use of DHA as a therapeutic agent in complementary alternative medicine for mitigating trigeminal inflammatory hyperalgesia.


Assuntos
Ácidos Docosa-Hexaenoicos/efeitos adversos , Hiperalgesia , Inflamação/induzido quimicamente , Neurônios/efeitos dos fármacos , Núcleo Espinal do Trigêmeo/efeitos dos fármacos , Animais , Ácidos Docosa-Hexaenoicos/administração & dosagem , Eletrofisiologia , Hiperalgesia/patologia , Masculino , Nociceptividade , Estimulação Física , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...