Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Front Chem ; 9: 707797, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34381760

RESUMO

In order to use a Hemoglobin Based Oxygen Carrier as an oxygen therapeutic or blood substitute, it is necessary to increase the size of the hemoglobin molecule to prevent rapid renal clearance. A common method uses maleimide PEGylation of sulfhydryls created by the reaction of 2-iminothiolane at surface lysines. However, this creates highly heterogenous mixtures of molecules. We recently engineered a hemoglobin with a single novel, reactive cysteine residue on the surface of the alpha subunit creating a single PEGylation site (ßCys93Ala/αAla19Cys). This enabled homogenous PEGylation by maleimide-PEG with >80% efficiency and no discernible effect on protein function. However, maleimide-PEG adducts are subject to deconjugation via retro-Michael reactions and cross-conjugation to endogenous thiol species in vivo. We therefore compared our maleimide-PEG adduct with one created using a mono-sulfone-PEG less susceptible to deconjugation. Mono-sulfone-PEG underwent reaction at αAla19Cys hemoglobin with > 80% efficiency, although some side reactions were observed at higher PEG:hemoglobin ratios; the adduct bound oxygen with similar affinity and cooperativity as wild type hemoglobin. When directly compared to maleimide-PEG, the mono-sulfone-PEG adduct was significantly more stable when incubated at 37°C for seven days in the presence of 1 mM reduced glutathione. Hemoglobin treated with mono-sulfone-PEG retained > 90% of its conjugation, whereas for maleimide-PEG < 70% of the maleimide-PEG conjugate remained intact. Although maleimide-PEGylation is certainly stable enough for acute therapeutic use as an oxygen therapeutic, for pharmaceuticals intended for longer vascular retention (weeks-months), reagents such as mono-sulfone-PEG may be more appropriate.

2.
Biomater Sci ; 8(14): 3896-3906, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32539053

RESUMO

In order to infuse hemoglobin into the vasculature as an oxygen therapeutic or blood substitute, it is necessary to increase the size of the molecule to enhance vascular retention. This aim can be achieved by PEGylation. However, using non-specific conjugation methods creates heterogenous mixtures and alters protein function. Site-specific PEGylation at the naturally reactive thiol on human hemoglobin (ßCys93) alters hemoglobin oxygen binding affinity and increases its autooxidation rate. In order to avoid this issue, new reactive thiol residues were therefore engineered at sites distant to the heme group and the α/ß dimer/dimer interface. The two mutants were ßCys93Ala/αAla19Cys and ßCys93Ala/ßAla13Cys. Gel electrophoresis, size exclusion chromatography and mass spectrometry revealed efficient PEGylation at both αAla19Cys and ßAla13Cys, with over 80% of the thiols PEGylated in the case of αAla19Cys. For both mutants there was no significant effect on the oxygen affinity or the cooperativity of oxygen binding. PEGylation at αAla19Cys had the additional benefit of decreasing the rates of autoxidation and heme release, properties that have been considered contributory factors to the adverse clinical side effects exhibited by previous hemoglobin based oxygen carriers. PEGylation at αAla19Cys may therefore be a useful component of future clinical products.


Assuntos
Hemoglobinas , Polietilenoglicóis , Cromatografia em Gel , Heme , Humanos , Oxigênio
3.
Free Radic Biol Med ; 134: 106-118, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30594736

RESUMO

Hemoglobin (Hb)-based oxygen carriers (HBOC) are modified extracellular proteins, designed to replace or augment the oxygen-carrying capacity of erythrocytes. However, clinical results have generally been disappointing due to adverse side effects, in part linked to the intrinsic oxidative toxicity of Hb. Previously a redox-active tyrosine residue was engineered into the Hb ß subunit (ßF41Y) to facilitate electron transfer between endogenous antioxidants such as ascorbate and the oxidative ferryl heme species, converting the highly oxidizing ferryl species into the less reactive ferric (met) form. We inserted different single tyrosine mutations into the α and ß subunits of Hb to determine if this effect of ßF41Y was unique. Every mutation that was inserted within electron transfer range of the protein surface and the heme increased the rate of ferryl reduction. However, surprisingly, three of the mutations (ßT84Y, αL91Y and ßF85Y) also increased the rate of ascorbate reduction of ferric(met) Hb to ferrous(oxy) Hb. The rate enhancement was most evident at ascorbate concentrations equivalent to that found in plasma (< 100 µM), suggesting that it might be of benefit in decreasing oxidative stress in vivo. The most promising mutant (ßT84Y) was stable with no increase in autoxidation or heme loss. A decrease in membrane damage following Hb addition to HEK cells correlated with the ability of ßT84Y to maintain the protein in its oxygenated form. When PEGylated and injected into mice, ßT84Y was shown to have an increased vascular half time compared to wild type PEGylated Hb. ßT84Y represents a new class of mutations with the ability to enhance reduction of both ferryl and ferric Hb, and thus has potential to decrease adverse side effects as one component of a final HBOC product.


Assuntos
Substitutos Sanguíneos/química , Heme/química , Hemoglobinas/química , Ferro/química , Estresse Oxidativo , Oxigênio/metabolismo , Tirosina/química , Animais , Ácido Ascórbico/metabolismo , Substitutos Sanguíneos/metabolismo , Transporte de Elétrons , Células HEK293 , Hemoglobinas/genética , Humanos , Metemoglobina/química , Camundongos , Camundongos Nus , Oxirredução , Oxiemoglobinas/química , Tirosina/genética
4.
Biosci Rep ; 38(4)2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-29802155

RESUMO

Hemoglobin (Hb)-based oxygen carriers (HBOCs) have been engineered to replace or augment the oxygen carrying capacity of erythrocytes. However, clinical results have generally been disappointing, in part due to the intrinsic oxidative toxicity of Hb. The most common HBOC starting material is adult human or bovine Hb. However, it has been suggested that fetal Hb may offer advantages due to decreased oxidative reactivity. Large-scale manufacturing of HBOC will likely and ultimately require recombinant sources of human proteins. We, therefore, directly compared the functional properties and oxidative reactivity of recombinant fetal (rHbF) and recombinant adult (rHbA) Hb. rHbA and rHbF produced similar yields of purified functional protein. No differences were seen in the two proteins in: autoxidation rate; the rate of hydrogen peroxide reaction; NO scavenging dioxygenase activity; and the NO producing nitrite reductase activity. The rHbF protein was: less damaged by low levels of hydrogen peroxide; less damaging when added to human umbilical vein endothelial cells (HUVEC) in the ferric form; and had a slower rate of intrinsic heme loss. The rHbA protein was: more readily reducible by plasma antioxidants such as ascorbate in both the reactive ferryl and ferric states; less readily damaged by lipid peroxides; and less damaging to phosphatidylcholine liposomes. In conclusion in terms of oxidative reactivity, there are advantages and disadvantages to the use of rHbA or rHbF as the basis for an effective HBOC.


Assuntos
Substitutos Sanguíneos/metabolismo , Hemoglobina Fetal/metabolismo , Hemoglobinas/metabolismo , Adulto , Animais , Células Endoteliais da Veia Umbilical Humana , Humanos , Óxido Nítrico/metabolismo , Oxirredução , Estresse Oxidativo , Proteínas Recombinantes/metabolismo
5.
Nat Struct Mol Biol ; 16(2): 168-75, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19182802

RESUMO

The second extracellular loop (EL2) of rhodopsin forms a cap over the binding site of its photoreactive 11-cis retinylidene chromophore. A crucial question has been whether EL2 forms a reversible gate that opens upon activation or acts as a rigid barrier. Distance measurements using solid-state (13)C NMR spectroscopy between the retinal chromophore and the beta4 strand of EL2 show that the loop is displaced from the retinal binding site upon activation, and there is a rearrangement in the hydrogen-bonding networks connecting EL2 with the extracellular ends of transmembrane helices H4, H5 and H6. NMR measurements further reveal that structural changes in EL2 are coupled to the motion of helix H5 and breaking of the ionic lock that regulates activation. These results provide a comprehensive view of how retinal isomerization triggers helix motion and activation in this prototypical G protein-coupled receptor.


Assuntos
Rodopsina/química , Animais , Bovinos , Linhagem Celular , Humanos , Luz , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Retinaldeído/química , Retinaldeído/metabolismo , Rodopsina/metabolismo
6.
J Biol Chem ; 284(15): 10190-201, 2009 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-19176531

RESUMO

Rhodopsin is a highly specialized G protein-coupled receptor (GPCR) that is activated by the rapid photochemical isomerization of its covalently bound 11-cis-retinal chromophore. Using two-dimensional solid-state NMR spectroscopy, we defined the position of the retinal in the active metarhodopsin II intermediate. Distance constraints were obtained between amino acids in the retinal binding site and specific (13)C-labeled sites located on the beta-ionone ring, polyene chain, and Schiff base end of the retinal. We show that the retinal C20 methyl group rotates toward the second extracellular loop (EL2), which forms a cap on the retinal binding site in the inactive receptor. Despite the trajectory of the methyl group, we observed an increase in the C20-Gly(188) (EL2) distance consistent with an increase in separation between the retinal and EL2 upon activation. NMR distance constraints showed that the beta-ionone ring moves to a position between Met(207) and Phe(208) on transmembrane helix H5. Movement of the ring toward H5 was also reflected in increased separation between the Cepsilon carbons of Lys(296) (H7) and Met(44) (H1) and between Gly(121) (H3) and the retinal C18 methyl group. Helix-helix interactions involving the H3-H5 and H4-H5 interfaces were also found to change in the formation of metarhodopsin II reflecting increased retinal-protein interactions in the region of Glu(122) (H3) and His(211) (H5). We discuss the location of the retinal in metarhodopsin II and its interaction with sequence motifs, which are highly conserved across the pharmaceutically important class A GPCR family, with respect to the mechanism of receptor activation.


Assuntos
Receptores Acoplados a Proteínas G/química , Retina/metabolismo , Rodopsina/química , Segmento Externo da Célula Bastonete/metabolismo , Sítios de Ligação , Linhagem Celular , Humanos , Espectroscopia de Ressonância Magnética , Conformação Molecular , Polienos/química , Conformação Proteica , Rodopsina/metabolismo , Bases de Schiff/química
7.
FEMS Microbiol Ecol ; 42(2): 235-41, 2002 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19709283

RESUMO

The prevalence, diversity and linkage of pTA-related plasmid rep and mob genes in 18 plasmids from three closely related species of Bacillus from diverse geographical locations have been investigated using PCR. pTA-related rep and mob sequences were both amplified from 13 of the 18 plasmids. For one plasmid, pBM9, only a pTA-related mob gene was amplified, whilst only a pTA-related rep gene was amplified from the Bacillus licheniformis plasmid pBL2. No products were amplified for either gene from two other B. licheniformis plasmids or from a larger 16-kb Bacillus subtilis plasmid, pBS6. Whilst simple gene detection suggests close linkage of both pTA-related rep and mob genes, on most of these plasmids, sequence analysis of amplified genes revealed more complex linkage relationships varying with geographical origin, plasmid size and bacterial host.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...