Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Pharmacol ; 177(24): 5534-5554, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32959887

RESUMO

BACKGROUND AND PURPOSE: The lack of selective sodium-calcium exchanger (NCX) inhibitors has hampered the exploration of physiological and pathophysiological roles of cardiac NCX 1.1. We aimed to discover more potent and selective drug like NCX 1.1 inhibitor. EXPERIMENTAL APPROACH: A flavan series-based pharmacophore model was constructed. Virtual screening helped us identify a novel scaffold for NCX inhibition. A distinctively different NCX 1.1 inhibitor, ORM-11372, was discovered after lead optimization. Its potency against human and rat NCX 1.1 and selectivity against other ion channels was assessed. The cardiovascular effects of ORM-11372 were studied in normal and infarcted rats and rabbits. Human cardiac safety was studied ex vivo using human ventricular trabeculae. KEY RESULTS: ORM-11372 inhibited human NCX 1.1 reverse and forward currents; IC50 values were 5 and 6 nM respectively. ORM-11372 inhibited human cardiac sodium 1.5 (INa ) and hERG KV 11.1 currents (IhERG ) in a concentration-dependent manner; IC50 values were 23.2 and 10.0 µM. ORM-11372 caused no changes in action potential duration; short-term variability and triangulation were observed for concentrations of up to 10 µM. ORM-11372 induced positive inotropic effects of 18 ± 6% and 35 ± 8% in anaesthetized rats with myocardial infarctions and in healthy rabbits respectively; no other haemodynamic effects were observed, except improved relaxation at the lowest dose. CONCLUSION AND IMPLICATIONS: ORM-11372, a unique, novel, and potent inhibitor of human and rat NCX 1.1, is a positive inotropic compound. NCX inhibition can induce clinically relevant improvements in left ventricular contractions without affecting relaxation, heart rate, or BP, without pro-arrhythmic risk.


Assuntos
Miócitos Cardíacos , Trocador de Sódio e Cálcio , Potenciais de Ação , Animais , Cálcio/metabolismo , Ventrículos do Coração/metabolismo , Miócitos Cardíacos/metabolismo , Coelhos , Ratos , Sódio/metabolismo
2.
Int J Pharm ; 436(1-2): 403-9, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22750429

RESUMO

Cocrystallization and salt formation have been shown to entail substantial promise in tailoring the physicochemical properties of drug compounds, in particular, their dissolution and hygroscopicity. In this work, we report on the preparation and comparative evaluation of a new cocrystal of itraconazole and malonic acid and two new hydrochloric salts (dihydrochloride and trihydrochloride) of itraconazole. The intrinsic dissolution rate, hygroscopicity, and thermodynamic stability were determined for the obtained solid-state forms and compared to itraconazole-succinic acid (2:1) cocrystal. The results show that the solid-state forms with higher intrinsic dissolution rate are less stable. Both itraconazole salts exhibited the highest dissolution rate, but also demonstrated high hygroscopicity at relative humidity above 70%. The new cocrystal, in contrast, were found to increase the dissolution rate of the parent drug by about 5-fold without compromising the hygroscopicity and the stability. This study demonstrates that, for dissolution rate enhancement of poorly water-soluble weak bases, cocrystallization is a more suitable approach than hydrochloric salt formation.


Assuntos
Antifúngicos/química , Cloretos/química , Itraconazol/química , Malonatos/química , Cristalização , Estabilidade de Medicamentos , Difração de Pó , Sais/química , Solubilidade , Difração de Raios X
3.
J Antimicrob Chemother ; 51(2): 361-5, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12562703

RESUMO

Antibiotics can cause severe alterations in the gut microflora and promote diarrhoea and overgrowth of pathogenic bacteria. The present study investigated the potency of targeted recombinant beta-lactamase (TRBL) to degrade a beta-lactam antibiotic in the jejunum of fistula-operated beagles. We used different peroral doses of purified beta-lactamase (PenP) of Bacillus licheniformis in enteric-coated pellets together with intravenous ampicillin. Serum and jejunal samples were collected for ampicillin and beta-lactamase analysis. A dose-response effect of TRBL on ampicillin concentrations in the jejunal samples could be observed. The highest doses applied decreased the jejunal ampicillin concentrations to undetectable levels. In the serum samples, the ampicillin concentrations were not affected by the beta-lactamase dose used. Our results indicate that it may be possible to evolve a targeted treatment to degrade beta-lactam antibiotics intestinally and, thus, decrease antibiotic-induced adverse effects on the gut microflora.


Assuntos
Ampicilina/metabolismo , Sistema Digestório/enzimologia , Penicilinas/metabolismo , beta-Lactamases/uso terapêutico , Animais , Área Sob a Curva , Cromatografia Líquida de Alta Pressão , Cães , Concentração de Íons de Hidrogênio , Jejuno/efeitos dos fármacos , Jejuno/microbiologia , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/uso terapêutico , Comprimidos com Revestimento Entérico , beta-Lactamases/administração & dosagem
4.
Physiol Plant ; 114(3): 343-353, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12060256

RESUMO

Activity of a number of enzymes related to lignin formation was measured in a Picea abies (L) Karsten suspension culture that is able to produce native-like lignin into the nutrient medium. This cell culture is an attractive model for studying lignin formation, as the process takes place independently of the complex macromolecular matrix of the native apoplast. Suspension culture proteins were fractionated into soluble cellular proteins, ionically and covalently bound cell wall proteins and nutrient medium proteins. The nutrient medium contained up to 5.3% of total coniferyl alcohol peroxidase (EC 1.11.1.7) activity and a significant NADH oxidase activity that is suggested to be responsible for hydrogen peroxide (H2O2) production. There also existed some malate dehydrogenase (EC 1.1.1.37) activity in the apoplast of suspension culture cells (in ionically and covalently bound cell wall protein fractions), possibly for the regeneration of NADH that is needed for peroxidase-catalysed H2O2 production. However, there is no proof of the existence of NADH in the apoplast. Nutrient medium peroxidases could be classified into acidic, slightly basic and highly basic isoenzyme groups by isoelectric focusing. Only acidic peroxidases were found in the covalently bound cell wall protein fraction. Several peroxidase isoenzymes across the whole pI range were detected in the protein fraction ionically bound to cell walls and in the soluble cellular protein fraction. One laccase-like isoenzyme with pI of approximately 8.5 was found in the nutrient medium that was able to form dehydrogenation polymer from coniferyl alcohol in the absence of H2O2. The total activity of this oxidase towards coniferyl alcohol was, however, several orders of magnitude smaller than that of peroxidases in vitro. According to 2D 1H-13C correlation NMR spectra, most of the abundant structural units of native lignin and released suspension culture lignin are present in the oxidase produced dehydrogenation polymer but in somewhat different amounts compared to peroxidase derived synthetic lignin preparations. A coniferin beta-glucosidase (EC 3.2.1.21) was observed to be secreted into the culture medium.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...