Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 20(4): 1798-1815, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30785284

RESUMO

Mycobacterium tuberculosis, the etiologic agent of tuberculosis, is an intracellular pathogen of alveolar macrophages. These cells avidly take up nanoparticles, even without the use of specific targeting ligands, making the use of nanotherapeutics ideal for the treatment of such infections. Methoxy poly(ethylene oxide)- block-poly(ε-caprolactone) nanoparticles of several different polymer blocks' molecular weights and sizes (20-110 nm) were developed and critically compared as carriers for rifampicin, a cornerstone in tuberculosis therapy. The polymeric nanoparticles' uptake, consequent organelle targeting and intracellular degradation were shown to be highly dependent on the nanoparticles' physicochemical properties (the cell uptake half-lives 2.4-21 min, the degradation half-lives 51.6 min-ca. 20 h after the internalization). We show that the nanoparticles are efficiently taken up by macrophages and are able to effectively neutralize the persisting bacilli. Finally, we demonstrate, using a zebrafish model of tuberculosis, that the nanoparticles are well tolerated, have a curative effect, and are significantly more efficient compared to a free form of rifampicin. Hence, these findings demonstrate that this system shows great promise, both in vitro and in vivo, for the treatment of tuberculosis.


Assuntos
Portadores de Fármacos , Macrófagos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Nanopartículas , Rifampina , Tuberculose/tratamento farmacológico , Animais , Modelos Animais de Doenças , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Humanos , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Nanopartículas/química , Nanopartículas/uso terapêutico , Células RAW 264.7 , Rifampina/química , Rifampina/farmacocinética , Rifampina/farmacologia , Tuberculose/metabolismo , Tuberculose/patologia , Peixe-Zebra
2.
Biomacromolecules ; 19(7): 2443-2458, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29601729

RESUMO

Polyester-based nanostructures are widely studied as drug-delivery systems due to their biocompatibility and biodegradability. They are already used in the clinic. In this work, we describe a new and simple biodegradable and biocompatible system as the Food and Drug Administration approved polyesters (poly-ε-caprolactone, polylactic acid, and poly(lactic- co-glycolic acid)) for the delivery of the anticancer drug paclitaxel (PTX) as a model drug. A hydrophobic polyester, poly(propylene succinate) (PPS), was prepared from a nontoxic alcohol (propylene glycol) and monomer from the Krebs's cycle (succinic acid) in two steps via esterification and melt polycondensation. Furthermore, their amphiphilic block copolyester, poly(ethylene oxide monomethyl ether)- block-poly(propylene succinate) (mPEO- b-PPS), was prepared by three steps via esterification followed by melt polycondensation and the addition of mPEO to the PPS macromolecules. Analysis of the in vitro cellular behavior of the prepared nanoparticle carriers (NPs) (enzymatic degradation, uptake, localization, and fluorescence resonance energy-transfer pair degradation studies) was performed by fluorescence studies. PTX was loaded to the NPs of variable sizes (30, 70, and 150 nm), and their in vitro release was evaluated in different cell models and compared with commercial PTX formulations. The mPEO- b-PPS copolymer analysis displays glass transition temperature < body temperature < melting temperature, lower toxicity (including the toxicity of their degradation products), drug solubilization efficacy, stability against spontaneous hydrolysis during transport in bloodstream, and simultaneous enzymatic degradability after uptake into the cells. The detailed cytotoxicity in vitro and in vivo tumor efficacy studies have shown the superior efficacy of the NPs compared with PTX and PTX commercial formulations.


Assuntos
Antineoplásicos/administração & dosagem , Nanopartículas/química , Paclitaxel/administração & dosagem , Animais , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Micelas , Nanopartículas/efeitos adversos , Nanopartículas/metabolismo , Paclitaxel/farmacocinética , Poliésteres/síntese química , Poliésteres/química , Polietilenoglicóis/química , Polipropilenos/química , Succinatos/química
3.
Beilstein J Org Chem ; 13: 2509-2520, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29259661

RESUMO

Monosubstituted derivatives of γ-cyclodextrin (γ-CD) are suitable building blocks for supramolecular polymers, and can also serve as precursors for the synthesis of other regioselectively monosubstituted γ-CD derivatives. We prepared a set of monosubstituted 2I-O-, 3I-O-, and 6I-O-(3-(naphthalen-2-yl)prop-2-en-1-yl) derivatives of γ-CD using two different methods. A key step of the first synthetic procedure is a cross-metathesis between previously described regioisomers of mono-O-allyl derivatives of γ-CD and 2-vinylnaphthalene which gives yields of about 16-25% (2-5% starting from γ-CD). To increase the overall yields, we have developed another method, based on a direct alkylation of γ-CD with 3-(naphthalen-2-yl)allyl chloride as the alkylating reagent. Highly regioselective reaction conditions, which differ for each regioisomer in a used base, gave the monosubstituted isomers in yields between 12-19%. Supramolecular properties of these derivatives were studied by DLS, ITC, NMR, and Cryo-TEM.

4.
Nanomedicine ; 13(1): 307-315, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27613399

RESUMO

We have developed a biodegradable, biocompatible system for the delivery of the antituberculotic antibiotic rifampicin with a built-in drug release and nanoparticle degradation fluorescence sensor. Polymer nanoparticles based on poly(ethylene oxide) monomethyl ether-block-poly(ε-caprolactone) were noncovalently loaded with rifampicin, a combination that, to best of our knowledge, was not previously described in the literature, which showed significant benefits. The nanoparticles contain a Förster resonance energy transfer (FRET) system that allows real-time assessment of drug release not only in vitro, but also in living macrophages where the mycobacteria typically reside as hard-to-kill intracellular parasites. The fluorophore also enables in situ monitoring of the enzymatic nanoparticle degradation in the macrophages. We show that the nanoparticles are efficiently taken up by macrophages, where they are very quickly associated with the lysosomal compartment. After drug release, the nanoparticles in the cmacrophages are enzymatically degraded, with half-life 88±11 min.


Assuntos
Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Macrófagos/metabolismo , Nanopartículas/química , Rifampina/administração & dosagem , Animais , Antituberculosos/administração & dosagem , Materiais Biocompatíveis/química , Transferência Ressonante de Energia de Fluorescência , Macrófagos/efeitos dos fármacos , Camundongos , Poliésteres/química , Polietilenoglicóis/química , Células RAW 264.7
5.
Biochem Pharmacol ; 79(2): 277-87, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19712670

RESUMO

CYP3A4 is the most important drug-metabolizing enzyme that is involved in biotransformation of more than 50% of drugs. Pregnane X receptor (PXR) dominantly controls CYP3A4 inducibility in the liver, whereas vitamin D receptor (VDR) transactivates CYP3A4 in the intestine by secondary bile acids. Four major functional PXR-binding response elements of CYP3A4 have been discovered and their cooperation was found to be crucial for maximal up-regulation of the gene in hepatocytes. VDR and PXR recognize similar response element motifs and share DR3(XREM) and proximal ER6 (prER6) response elements of the CYP3A4 gene. In this work, we tested whether the recently discovered PXR response elements DR4(eNR3A4) in the XREM module and the distal ER6 element in the CLEM4 module (CLEM4-ER6) bind VDR/RXRalpha heterodimer, whether the elements are involved in the intestinal transactivation, and whether their cooperation with other elements is essential for maximal intestinal expression of CYP3A4. Employing a series of gene reporter plasmids with various combinations of response element mutations transiently transfected into four intestinal cell lines, electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation assay (ChIP), we found that the CLEM4-ER6 motif interacts with VDR/RXRalpha heterodimer and partially cooperates with DR3(XREM) and prER6 in both basal and VDR-mediated inducible CYP3A4 regulation in intestinal cells. In contrast, eNR3A4 is involved only in the basal transactivation in intestinal cells and in the PXR-mediated rifampicin-induced transactivation of CYP3A4 in LS174T intestinal cells. We thus describe a specific ligand-induced VDR-mediated transactivation of the CYP3A4 gene in intestinal cells that differs from PXR-mediated CYP3A4 regulation in hepatocytes.


Assuntos
Citocromo P-450 CYP3A/genética , Regulação Enzimológica da Expressão Gênica/fisiologia , Mucosa Intestinal/metabolismo , Receptores de Calcitriol/fisiologia , Transcrição Gênica/fisiologia , Sequência de Bases , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Primers do DNA , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Intestinos/enzimologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
Neuropharmacology ; 55(4): 409-18, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18627772

RESUMO

Class C G-protein coupled receptors form obligatory dimers. Metabotropic glutamate receptors (mGluRs) are found commonly as homodimers. Alternative splicing of mGluR1 gene results in vivo in the expression of a long variant mGluR1a and at least two short variants mGluR1b and d. The amino acid sequences diverge within their carboxyl-termini six amino acid residues following RRKK motif. This four basic residue sequence was shown to have pronounced impact on function and trafficking of the short variants, while for mGluR1a the long C-terminus reduces the effects caused by presence of the RRKK motif. Here we investigated consequences of interactions between long mGluR1a and short mGluR1b variants. Our results show that mGluR1a interferes with mGluR1b trafficking to the cell surface in HEK293 transfected cells. Expression of a mGlu1a mutant incapable of activating G-proteins with mGluR1b mutated in the glutamate binding site led to the formation of a functional heterodimer. Moreover, we show that swapping long mGluR1a and/or short mGluR1b C-termini with corresponding regions in chimerical GB1 and GB2 gamma-amino butyric acid b (GABAb) receptor subunits do not exclude heterodimerization. These data reveal that the C-terminal ends of mGluR1 do not control subunit association, such that mGluR1 dimers with two distinct C-termini can form and function properly.


Assuntos
Processamento Alternativo/genética , Expressão Gênica/fisiologia , Receptores de Glutamato Metabotrópico/classificação , Receptores de Glutamato Metabotrópico/metabolismo , Cálcio/metabolismo , Linhagem Celular Transformada , Humanos , Imunoprecipitação/métodos , Mutagênese/fisiologia , Monoéster Fosfórico Hidrolases/metabolismo , Estrutura Terciária de Proteína/fisiologia , Transporte Proteico/fisiologia , Receptores de Glutamato Metabotrópico/genética , Transfecção/métodos
7.
Chronobiol Int ; 20(5): 809-21, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-14535355

RESUMO

Reproductive physiology of male moths is regulated by a peripheral circadian system, which controls the timing of sperm release from the testis into the upper vas deferens (UVD) and timing of sperm transfer from the UVD to the seminal vesicles. We investigated various effects of light and temperature on sperm release and transfer rhythms in the moth Spodoptera littoralis. We report that both rhythms persist for up to 1 week in constant darkness without significant dampening and are also temperature compensated in the range from 20 degrees C to 30 degrees C. However, the duration of sperm retention in the UVD is temperature-dependent; consequently, temperature exerts a masking effect on the rhythm of sperm transfer. Experimental manipulations of light and temperature regime demonstrated that light dominates over temperature in entraining the timing of sperm release and transfer. Nevertheless, temperature plays a critical role in the absence of light Zeitgeber. Sperm release and transfer are arrhythmic in constant light (LL); however, both rhythms are restored by temperature cycles.


Assuntos
Ritmo Circadiano/fisiologia , Transporte Espermático/fisiologia , Spodoptera/fisiologia , Animais , Masculino , Fotoperíodo , Glândulas Seminais/fisiologia , Temperatura , Testículo/fisiologia , Ducto Deferente/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...