Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 147(14)2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32631831

RESUMO

Self-avoidance is a conserved mechanism that prevents crossover between sister dendrites from the same neuron, ensuring proper functioning of the neuronal circuits. Several adhesion molecules are known to be important for dendrite self-avoidance, but the underlying molecular mechanisms are incompletely defined. Here, we show that FMI-1/Flamingo, an atypical cadherin, is required autonomously for self-avoidance in the multidendritic PVD neuron of Caenorhabditis elegans The fmi-1 mutant shows increased crossover between sister PVD dendrites. Our genetic analysis suggests that FMI-1 promotes transient F-actin assembly at the tips of contacting sister dendrites to facilitate their efficient retraction during self-avoidance events, probably by interacting with WSP-1/N-WASP. Mutations of vang-1, which encodes the planar cell polarity protein Vangl2 previously shown to inhibit F-actin assembly, suppress self-avoidance defects of the fmi-1 mutant. FMI-1 downregulates VANG-1 levels probably through forming protein complexes. Our study identifies molecular links between Flamingo and the F-actin cytoskeleton that facilitate efficient dendrite self-avoidance.


Assuntos
Actinas/metabolismo , Caderinas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Animais Geneticamente Modificados/metabolismo , Comportamento Animal , Caderinas/antagonistas & inibidores , Caderinas/genética , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/genética , Dendritos/metabolismo , Regulação para Baixo , Microscopia de Fluorescência , Mutagênese , Neurônios/metabolismo , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fotodegradação , Interferência de RNA , RNA de Cadeia Dupla/metabolismo , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Imagem com Lapso de Tempo
2.
Aging Cell ; 19(5): e13146, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32307902

RESUMO

Age-dependent cognitive and behavioral deterioration may arise from defects in different components of the nervous system, including those of neurons, synapses, glial cells, or a combination of them. We find that AFD, the primary thermosensory neuron of Caenorhabditis elegans, in aged animals is characterized by loss of sensory ending integrity, including reduced actin-based microvilli abundance and aggregation of thermosensory guanylyl cyclases. At the functional level, AFD neurons in aged animals are hypersensitive to high temperatures and show sustained sensory-evoked calcium dynamics, resulting in a prolonged operating range. At the behavioral level, senescent animals display cryophilic behaviors that remain plastic to acute temperature changes. Excessive cyclase activity of the AFD-specific guanylyl cyclase, GCY-8, is associated with developmental defects in AFD sensory ending and cryophilic behavior. Surprisingly, loss of the GCY-8 cyclase domain reduces these age-dependent morphological and behavioral changes, while a prolonged AFD operating range still exists in gcy-8 animals. The lack of apparent correlation between age-dependent changes in the morphology or stimuli-evoked response properties of primary sensory neurons and those in related behaviors highlights the importance of quantitative analyses of aging features when interpreting age-related changes at structural and functional levels. Our work identifies aging hallmarks in AFD receptive ending, temperature-evoked AFD responses, and experience-based thermotaxis behavior, which serve as a foundation to further elucidate the neural basis of cognitive aging.


Assuntos
Senescência Celular , Neurônios/citologia , Resposta Táctica , Temperatura , Animais , Caenorhabditis elegans
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...