Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Parasitol Res ; 115(3): 1015-25, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26573518

RESUMO

Mosquitoes (Diptera: Culicidae) serve as important vectors for a wide number of parasites and pathogens of huge medical and veterinary importance. Aedes aegypti is a primary dengue vector in tropical and subtropical urban areas. There is an urgent need to develop eco-friendly mosquitocides. In this study, silver nanoparticles (AgNP) were biosynthesized using neem cake, a by-product of the neem oil extraction from the seed kernels of Azadirachta indica. AgNP were characterized using a variety of biophysical methods, including UV-vis spectrophotometry, FTIR, SEM, EDX, and XRD analyses. Furthermore, the neem cake extract and the biosynthesized AgNP were tested for acute toxicity against larvae and pupae of the dengue vector Ae. aegypti. LC50 values achieved by the neem cake extract ranged from 106.53 (larva I) to 235.36 ppm (pupa), while AgNP LC50 ranged from 3.969 (larva I) to 8.308 ppm (pupa). In standard laboratory conditions, the predation efficiency of a Carassius auratus per day was 7.9 (larva II) and 5.5 individuals (larva III). Post-treatment with sub-lethal doses of AgNP, the predation efficiency was boosted to 9.2 (larva II) and 8.1 individuals (larva III). The genotoxic effect of AgNP was studied on C. auratus using the comet assay and micronucleus frequency test. DNA damage was evaluated on peripheral erythrocytes sampled at different time intervals from the treatment; experiments showed no significant damages at doses below 12 ppm. Overall, this research pointed out that neem cake-fabricated AgNP are easy to produce, stable over time, and can be employed at low dosages to reduce populations of dengue vectors, with moderate detrimental effects on non-target mosquito natural enemies.


Assuntos
Aedes , Azadirachta/química , Insetos Vetores , Inseticidas , Nanopartículas Metálicas , Aedes/efeitos dos fármacos , Aedes/genética , Animais , Ensaio Cometa , Dano ao DNA , Dengue/transmissão , Glicerídeos , Carpa Dourada/genética , Carpa Dourada/fisiologia , Humanos , Repelentes de Insetos , Insetos Vetores/efeitos dos fármacos , Insetos Vetores/genética , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Testes para Micronúcleos , Extratos Vegetais/farmacologia , Folhas de Planta , Comportamento Predatório/efeitos dos fármacos , Pupa/efeitos dos fármacos , Prata , Terpenos
2.
Parasitol Res ; 115(3): 1071-83, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26614358

RESUMO

Mosquito-borne diseases represent a deadly threat for millions of people worldwide. The Culex genus, with special reference to Culex quinquefasciatus, comprises the most common vectors of filariasis across urban and semi-urban areas of Asia. In recent years, important efforts have been conducted to propose green-synthesized nanoparticles as a valuable alternative to synthetic insecticides. However, the mosquitocidal potential of carbon nanoparticles has been scarcely investigated. In this study, the larvicidal and pupicidal activity of carbon nanoparticle (CNP) and silver nanoparticle (AgNP) was tested against Cx. quinquefasciatus. UV-Vis spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDX) spectroscopy, and Raman analysis confirmed the rapid and cheap synthesis of carbon and silver nanoparticles. In laboratory assays, LC50 (lethal concentration that kills 50 % of the exposed organisms) values ranged from 8.752 ppm (first-instar larvae) to 18.676 ppm (pupae) for silver nanoparticles and from 6.373 ppm (first-instar larvae) to 14.849 ppm (pupae) for carbon nanoparticles. The predation efficiency of the water bug Lethocerus indicus after a single treatment with low doses of silver and carbon nanoparticles was not reduced. Moderate evidence of genotoxic effects induced by exposure to carbon nanoparticles was found on non-target goldfish, Carassius auratus. Lastly, the plant extract used for silver nanosynthesis was tested for 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging activity. Overall, our results pointed out that AgNP and CNP can be a candidate for effective tools to reduce larval and pupal populations of filariasis vectors, with reduced genotoxicity and impact on behavioral traits of other aquatic organisms sharing the same ecological niche of Cx. quinquefasciatus.


Assuntos
Culex , Insetos Vetores , Nanopartículas/toxicidade , Animais , Benzotiazóis/metabolismo , Compostos de Bifenilo/metabolismo , Carbono , Culex/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Sequestradores de Radicais Livres/farmacologia , Carpa Dourada/genética , Carpa Dourada/fisiologia , Heterópteros/efeitos dos fármacos , Heterópteros/genética , Heterópteros/fisiologia , Índia , Indicadores e Reagentes/metabolismo , Insetos Vetores/efeitos dos fármacos , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Dose Letal Mediana , Moringa oleifera/química , Nanopartículas/química , Picratos/metabolismo , Extratos Vegetais/farmacologia , Folhas de Planta/química , Comportamento Predatório/efeitos dos fármacos , Pupa/efeitos dos fármacos , Sementes/química , Prata , Organismos Livres de Patógenos Específicos , Ácidos Sulfônicos/metabolismo
3.
Parasitol Res ; 115(2): 651-62, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26462804

RESUMO

Dengue is a mosquito-borne viral disease that has rapidly spread in all regions of the world in recent years. Female mosquitoes, mainly Aedes aegypti, transmit dengue. Approximately 3,900 million people, in 128 countries, are at risk of dengue infection. Recently, a focus has been provided on the potential of green-synthesized nanoparticles as inhibitors of the production of dengue viral envelope (E) protein in Vero cells and downregulators of the expression of dengue viral E gene. Algae are an outstanding reservoir of novel compounds, which may help in the fight against mosquito-borne diseases. In this research, silver nanoparticles (AgNP) were rapidly synthesized using a cheap extract of the alga Centroceras clavulatum. AgNP were characterized by UV­vis spectrophotometry, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). In mosquitocidal assays, LC50 values of C. clavulatum extract against A. aegypti larvae and pupae were 269.361 ppm (larva I), 309.698 ppm (larva II), 348.325 ppm (larva III), 387.637 ppm (larva IV), and 446.262 ppm (pupa). C. clavulatum extract also exhibited moderate antioxidant activity, both in 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide (NO) radical scavenging assays. LC50 values of C. clavulatum-synthesized AgNP were 21.460 ppm (larva I), 23.579 ppm (larva II), 25.912 ppm (larva III), 29.155 ppm (larva IV), and 33.877 ppm (pupa). Furthermore, C. clavulatum-synthesized AgNP inhibited dengue (serotype dengue virus type-2 (DEN-2)) viral replication in Vero cells. Notably, 50 µg/ml of green-synthesized AgNP showed no cytotoxicity on Vero cells while reduced DEN-2 viral growth of more than 80%; 12.5 µg/ml inhibited viral growth of more than 50%. Cellular internalization assays highlighted that untreated infected cells showed high intensity of fluorescence emission, which denotes high level of viral internalization. Conversely, AgNP-treated infected cells showed reduced levels of fluorescence, failing to show significant viral load. Overall, our study showed that alga-mediated synthesis of metal nanoparticles may be considered to develop newer, safer, and cheap tools in the fight against the dengue virus, serotype DEN-2, and its vector A. aegypti, with little cytotoxicity on mammalian cells.


Assuntos
Aedes , Vírus da Dengue/crescimento & desenvolvimento , Insetos Vetores , Inseticidas , Nanopartículas Metálicas/toxicidade , Rodófitas/metabolismo , Animais , Antioxidantes/farmacologia , Compostos de Bifenilo/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Dengue/prevenção & controle , Dengue/transmissão , Vírus da Dengue/efeitos dos fármacos , Vírus da Dengue/genética , Feminino , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Dose Letal Mediana , Nanopartículas Metálicas/química , Óxido Nítrico/metabolismo , Picratos/metabolismo , Folhas de Planta/química , Pupa/efeitos dos fármacos , Pupa/crescimento & desenvolvimento , Prata , Células Vero , Replicação Viral/efeitos dos fármacos , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...