Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(3): e13823, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36873538

RESUMO

Cancer is a second leading disease-causing death worldwide that will continuously grow as much as 70% in the next 20 years. Chemotherapy is still becoming a choice for cancer treatment despite its severity of side effects and low success rate due to ineffective delivery of the chemodrugs. Since it was introduced in 1960, significant progress has been achieved in the use of liposomes in drug delivery. The study aims to review relevant literatures on role of PEGylated liposome in enhancing cytotoxic activity of several agents. A systematic literature on the use of PEGylated liposomes in anticancer research via Scopus, Google scholar and PubMed databases was conducted for studies published from 2000 to 2022. A total of 15 articles were selected and reviewed from 312 articles identified covering a variety of anticancer treatments by using PEGylated liposomes. PEGylated liposome which is purposed to achieve steric equilibrium is one of enhanced strategies to deliver anticancer drugs. It has been shown that some improvement of delivery and protection form a harsh gastric environment of several anticancer drugs when they are formulated in a PEGylated liposome. One of the successful drugs that has been clinically used is Doxil®, followed by some other drugs in the pipeline Various drugs (compounds) had been used to enhance the efficacy of PEGylated liposomes for targeted cancer cells in vitro and in vivo. In conclusion, PEGylated liposomes enhance drug activities and have great potential to become efficient anticancer delivery to follow Doxil® in the clinical setting.

2.
J Pharm Bioallied Sci ; 13(2): 199-204, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34349480

RESUMO

CONTEXT: Andrographolide (AND) is an active compound of well-known medicinal plant Andrographis paniculata. It has been widely published for various activities. AND is difficult to develop into dosage form due to its poor solubility and bioavailability. This problem could be solved by using self-nanoemulsifying drug delivery system (SNEDDS) for its formulation. However, the increase of bioavailability might result in potential toxicity as a large amount of drug is absorbed. AIMS: The aim of this study is to evaluate the acute potential toxicity using Organization for Economic Cooperation and Development (OECD) test: 401 methods. SUBJECTS AND METHODS: The OECD 401 method employs groups of animals treated by a single dose or repeated dose (<24 h) of the drug with three variances of doses. In this study, thirty male Wistar rats were divided into five groups which consisted two groups of control and three groups of AND SNEDDS formulation (500, 700, and 900 mg/kg body weight [BW], respectively). Intensive observation of toxicity symptom was performed during the first 30 minutes followed by periodic observation for 14 days. Posttermination, histopathological examination of the liver and kidney was conducted to confirm the toxicity symptoms. To determine the level of toxicity, the lethal dose 50 (LD50) value was calculated at the end of the study. RESULTS: The result showed that all groups presented similar toxicological symptoms such as salivation, lethargy, and cornea reflex. However, based on histopathological examination, there were abnormalities, but still in an early stage. The toxicological symptom that emerged seems related to the SNEDDS formulation with lipophilic properties. Furthermore, the value of LD50 was 832.6 mg/kg BW (po). CONCLUSIONS: The AND SNEDDS formulation was slightly toxic in male Wistar rats po.

3.
Saudi Pharm J ; 29(6): 625-634, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34194270

RESUMO

This current study aims to optimize, characterize, and observe the stability of the self-nano emulsifying drug delivery system (SNEDDS) of propolis extract (PE) for improving the immune response. Optimization of the selected composition of SNEDDS was conducted using a D-optimal mixture design. SNEDDS was prepared by loading 150 mg/mL of PE in oil, surfactant, and cosurfactant phases. The thermodynamic stability test was carried out with phase separation parameters followed by the robustness to dilution and accelerated stability test. The immunostimulant activity was examined in vitro and in vivo by determining the phagocytic activity, cell proliferation, production of nitrite oxide levels of RAW 264.7 cells, phagocytic activity of macrophages, and the number of leukocytes, neutrophils, and lymphocytes. The formula optimization showed that the formula containing Capryol-90, Cremophor RH40, and PEG 400 at a ratio of 30: 34: 36 was optimum. The verification response of the optimum formula with drug loading showed that the transmittance, droplet size, and zeta potential were 96.90 ± 0.00%, 28.7 ± 1.20 nm, and -56.5 ± 2.05 mV, respectively. The thermodynamic stability test and robustness to dilution did not find any separation phase. The accelerated stability test results were classified as stable. The in vitro and in vivo immunostimulant activity test showed that PE-loaded SNEDDS exhibited a higher immunostimulant effect than PE. In conclusion, the optimum and stable composition of PE loaded SNEDDS was found with a simple and accurate method using the D-Optimal mixture design and demonstrated an immunostimulant activity.

4.
Adv Pharm Bull ; 11(1): 120-129, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33747859

RESUMO

Purpose: This study aimed to prepare, characterize, examine the stability and evaluation of the antibacterial activity of Indonesian propolis extract-loaded self-emulsifying (PESE). Methods: Oil, emulsifier, and co-emulsifier were selected as the carrier for the PESE formulation through a propolis-extract solubility test on each carrier, followed by evaluation of the nanoemulsion region in a pseudo ternary phase diagram. Pre-concentrate of PESE was prepared with the addition of 150 mg/mL propolis extract followed by characterization for the transmittance, globule size, zeta potential, thermodynamic stability, robustness to dilution, and accelerated stability. The selected formulation was tested for antibacterial activity using a microdilution method. Results: The PESE characterization produced a clear nanoemulsion with a globule size ranging from 13 to 45 nm and zeta potential of less than -38 mV. The PESE formulation with a composition of 150 mg/mL propolis extract, 20% castor oil, 40%-70% Kolliphor EL, and 10%-40% polyethylene glycol (PEG) 400 were thermodynamically stable. The PESE formulation with the composition of 20% castor oil, 40% Kolliphor EL, and 40% PEG 400 was the optimum formulation that passed the robustness to dilution evaluation and an accelerated stability test for 3 months. The antibacterial activity test on this formulation indicated improved activity against Escherichia coli and Staphylococcus aureus compared with that of propolis extract. Conclusion: These studies demonstrated that PESE in optimum formulation could be used as an antibacterial, particularly in E. coli and S. aureus.

5.
Adv Pharm Bull ; 11(1): 171-180, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33747864

RESUMO

Purpose: Insulin resistance is a characteristic of non-insulin-dependent diabetes mellitus associated with obesity and caused by the failure of pancreatic beta cells to secrete sufficient amount of insulin. Andrographolide (AND) improves beta-cell reconstruction and inhibits fat-cell formation. This research aimed to improve the delivery of water-insoluble AND in self-nanoemulsifying (ASNE) formulation, tested in streptozotocin (STZ)-induced diabetic rats and 3T3-L1 preadipocyte cells. Methods: A conventional formulation of AND in suspension was used as a control. The experimental rats were orally administered with self-nanoemulsifying (SNE) and suspension of AND for 8 days. Measurements were performed to evaluate blood glucose levels in preprandial and postprandial conditions. Immunohistochemistry was used to assess the process of islet beta cell reconstruction. In vitro study was performed using cell viability and adipocyte differentiation assay to determine the delivery of AND in the formulation. Results: ASNE lowered blood glucose levels (day 4) faster than AND suspension (day 6). The histological testing showed that ASNE could regenerate pancreatic beta cells. Therefore, ASNE ameliorated pancreatic beta cells. The in vitro evaluation indicated the inhibition of adipocyte differentiation by both AND and ASNE, which occurred in a time-dependent manner. ASNE formulation had better delivery than AND. Conclusion: ASNE could improve the antidiabetic activity by lowering blood glucose levels, enhancing pancreatic beta cells, and inhibiting lipid formation in adipocyte cells.

6.
J Public Health Res ; 9(2): 1831, 2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32728572

RESUMO

Background: Sweet potato has a potential to be used as a raw material for tablets. However, it needs chemical modifications to produce derivatives with excellent pharmaceutical characteristics. The primary purpose of this research was to use sweet potato starch (Ipomoea batatas Lamk.) as a tablet excipient modified through a chemical process. Design and Methods: This study is experimental and is divided into three stages. The first stage is the extraction process to obtain sweet potato starch. The second stage is the chemical modification of sweet potato starch using pentanol-1 and glacial acetic acid. The third step is the analysis of the pharmaceutical properties of the mutated lab model compared to the control sample and Amprotab. Results: The descriptive-comparative analysis showed sweet potato starch modified with panthenol-1 had a higher hardness value (=2.55±0.34) compared to native starch (1.00±0.08). The particle size distribution of the modified sample with acetate acid (=15.20±1.79) was higher than the others. Conclusions: In conclusion, modified sweet potato starch has better pharmaceutical properties than native starch. Further research needs to be conducted on the magnitude of the potential of sweet potato starch as an excipient, both as filler, a binder, and a crushing agent on tablet preparations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...