Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1379877, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756968

RESUMO

Introduction: Selenium (Se) deficiency, stemming from malnutrition in humans and animals, has the potential to disrupt many vital physiological processes, particularly those reliant on specific selenoproteins. Agronomic biofortification of crops through the application of Se-containing sprays provides an efficient method to enhance the Se content in the harvested biomass. An optimal candidate for systematic enrichment, guaranteeing a broad trophic impact, must meet several criteria: (i) efficient accumulation of Se without compromising crop yield, (ii) effective conversion of mineral Se fertilizer into usable organically bound Se forms (Seorg), (iii) acceptance of a Se-enriched crop as livestock feed, and (iv), interest from the food processing industry in utilization of Se-enriched outputs. Hence, priority should be given to high-protein leafy crops, such as soybean. Methods: A three-year study in the Czech Republic was conducted to investigate the response of field-grown soybean plants to foliar application of Na2SeO4 solutions (0, 15, 40, and 100 g/ha Se); measured outcomes included crop yield, Se distribution in aboveground biomass, and the chemical speciation of Se in seeds. Results and Discussion: Seed yield was unaffected by applied SeO4 2-, with Se content reaching levels as high as 16.2 mg/kg. The relationship between SeO4 2-dose and Se content in seeds followed a linear regression model. Notably, the soybeans demonstrated an impressive 73% average recovery of Se in seeds. Selenomethionine was identified as the predominant species of Se in enzymatic hydrolysates of soybean, constituting up to 95% of Seorg in seeds. Minor Se species, such as selenocystine, selenite, and selenate, were also detected. The timing of Se spraying influenced both plant SeO4 2- biotransformation and total content in seeds, emphasizing the critical importance of optimizing the biofortification protocol. Future research should explore the economic viability, long-term ecological sustainability, and the broad nutritional implications of incorporating Se-enriched soybeans into food for humans and animals.

2.
Environ Toxicol Chem ; 43(2): 288-298, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37988263

RESUMO

Honey bees (Apis mellifera L.) represent a random biosampler integrating pollutants over space and time. An effective biomonitor for trace element (TE) pollution should provide a linear response to TE levels in the environment. However, uncertainties in detecting TEs originating in soil limit their use. To address this, nine experimental sites with multiple apiaries were established in the Upper Palatine Forest, Czech Republic. The soils surrounding the hives were characterized by estimations of the pseudototal and (bio)available pools of TEs. Our study aimed to (1) quantify the linear relationships between soil TE indices and TE contents in bees, bee bread, honey, and wax, and (2) verify the biobarrier function protecting honey from TE contamination. Lead (0.046-0.140 µg g-1 ) and nickel (0.12-4.30 µg g-1 ) contents in bees showed strong linear correlations with (bio)available Pb (0.012-0.254 µg g-1 ) and pseudototal Ni (17.1-36.4 µg g-1 ) in soil (Pearson's r = 0.95 and 0.88, p < 0.005), providing high spatial resolution. A weaker, insignificant correlation was observed for chromium (Cr; r = 0.65) and vanadium (V; 0.44), while no correlation was found for cadmium (Cd). However, the lack of associations for Cr, V, and Cd may result from the low soil TE levels in the region, negligible differences among the majority of sites, and temporal concerns related to different time scales of the biomonitors, impacting the linear model's sensitivity. Biochemical traits in bees, such as the biobarrier function, and different bioavailability of TEs from ingested matter may affect the matrix-to-matrix transfer of TEs in an element-dependent manner. Consequently, the linear response of bee-related biomonitors to TE levels in the environment may significantly deteriorate. Environ Toxicol Chem 2024;43:288-298. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Metais Pesados , Oligoelementos , Abelhas , Animais , Oligoelementos/análise , Solo/química , Cádmio , Monitoramento Ambiental , Meio Ambiente , Metais Pesados/análise
3.
Environ Sci Pollut Res Int ; 31(4): 5331-5343, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38114695

RESUMO

The removal of copper (Cu) in soils by green technology is less treated with urgency, as it is a plant micronutrient. We examined the efficiency of Cu shoot accumulation by herbaceous plants in Cu-contaminated and non-contaminated soils in Trhové Dusniky and Podles, respectively, in the Czech Republic. The total soil Cu content of 81 mg kg-1 in Trhové Dusniky indicated a slight contamination level compared to 50 mg kg-1, the permissible value by WHO, and < 35 in Podlesí, representing a clean environment. The Cu content was above the permissible value in plants (10 mg kg-1 by WHO) in herbaceous speciesat the control site without trees: Stachys palustris L. (10.8 mg kg-1), Cirsium arvense L. (11.3 mg kg-1), Achillea millefolium L. (12.1 mg kg-1), Anthemis arvense L. (13.2 mg kg-1), and Calamagrostis epigejos L. (13.7 mg kg-1). In addition, Hypericum maculatum Crantz (10.6 mg kg-1), Campanula patula L. (11.3 mg kg-1), C. arvense (15 mg kg-1), and the highest accumulation in shoot of Equisetum arvense L. (37.1 mg kg-1), all under the canopy of trees at the uncontaminated site, were above the WHO value. Leucanthemum Vulgare (Lam.) and Plantago lanceolata L. recorded 11.2 mg kg-1 and 11.5 mg kg-1, respectively, in the soil of the Cu-contaminated site. These herbaceous species can support the phyto-management of Cu-contaminated soils, especially E. arvense. Critical attention is well-required in the medicinal application of herbaceous plants in treating human ailments due to their Cu accumulation potentials above the threshold. Spontaneous surveys and analysis of Cu speciation in herbaceous species can reveal suitable plants to decontaminate soils and provide caution on consumable products, especially bioactive compounds.


Assuntos
Poluentes do Solo , Oligoelementos , Humanos , Cobre/análise , Poluentes do Solo/análise , Plantas , Oligoelementos/análise , Solo , Árvores , Biodegradação Ambiental
4.
Environ Sci Pollut Res Int ; 30(32): 78707-78717, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37273046

RESUMO

Two groups of invertebrates, terrestrial mollusks (Gastropoda) and Chrysomela populi leaf beetles (Coleoptera: Chrysomelidae), were sampled to estimate the suitability of these organisms as bioindicators of risk element pollution (predominantly Cd, Pb, and Zn) alongside the risk element concentration gradient in the contaminated area (former mining/smelting areas in the vicinity of Príbram city, Central Bohemia, Czech Republic). The individuals representing ten species of terrestrial snails and imagoes of C. populi were collected manually at five sampling sites, differing in the level of soil contamination with risk elements. The findings showed high variability of the results regardless of the element determined, animal species, and sampling location. Among the elements, higher accumulation ability was observed for Cd and Zn, given the higher bioaccessibility of these elements in soils compared to Pb, Cr, and Cu. Higher Cd and Zn accumulation in the soft tissues of gastropods (without any statistically significant differences among the species) compared to C. populi was also recorded. Medians of the bioaccumulation factors (BAFs) reached up to 33.2 for Cd and 5.8 for Zn, in gastropods while reaching up to 3.4 for Cd, and 2.3 for Zn, for C. populi. For both groups of organisms, paradoxically, a higher rate of accumulation of risk elements was observed in all analyzed organisms in sites with lower soil contamination compared to heavily contaminated sites. This indicated the ability of the organisms living in extreme conditions to avoid the uptake of these elements or to move among areas of different contamination levels. Thus, terrestrial gastropods and C. populi proved to be unsuitable bioindicators for assessing soil pollution.


Assuntos
Besouros , Metais Pesados , Poluentes do Solo , Animais , Biomarcadores Ambientais , Metais Pesados/análise , Cádmio , Chumbo , Monitoramento Ambiental/métodos , Poluentes do Solo/análise , Solo , Caramujos , Medição de Risco , China
5.
Environ Sci Pollut Res Int ; 30(29): 74314-74326, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37202639

RESUMO

The accuracy of environmental risk assessment depends upon selecting appropriate matrices to extract the most risk-relevant portion of contaminant(s) from the soil. Here, we applied the chelatants EDTA and tartaric acid to extract a metal-contaminated soil. Pistia stratiotes was applied as an indicator plant to measure accumulation from the metal-laden bulk solutions generated, in a hydroponic experiment lasting 15 days. Speciation modeling was used to elucidate key geo-chemical mechanisms impacting matrix and metal-specific uptake revealed by experimental work. The highest concentrations of soil-borne metals were extracted from soil by EDTA (7.4% for Cd), but their uptake and translocation to the plant were restricted due to the formation of stable metal complexes predominantly with DOC. Tartaric acid solubilized metals to a lesser extent (4.6% for Cd), but a higher proportion was plant available due to its presence mainly in the form of bivalent metal cations. The water extraction showed the lowest metal extraction (e.g., 3.9% for Cd), but the metal species behaved similarly to those extracted by tartaric acid. This study demonstrates that not all extractions are equal and that metal-specific speciation will impact accurate risk assessment in soil (water)-plant systems. In the case of EDTA, a deleterious impact on DOC leaching is an obvious drawback. As such, further work should now determine soil and not only metal-specific impacts of chelatants on the extraction of environmentally relevant portions of metal(loid)s.


Assuntos
Araceae , Metais Pesados , Poluentes do Solo , Metais Pesados/análise , Cádmio , Ácido Edético/química , Solo/química , Biodegradação Ambiental , Poluentes do Solo/análise
7.
Environ Sci Pollut Res Int ; 30(22): 62397-62409, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36943558

RESUMO

The aims of this study were (i) to specify real risk elemetnt (RE) uptake by wild terresrial mammals (A. sylvaticus and M. arvalis), (ii) to describe RE distribution in critical organs such as the liver and kidney, and (iii) to determine potencial differences in RE toxicokinetics with regards to individual species or sex. Three groups of experimental animals were fed diets amended with soil and green biomass of hyperaccumulator Arabidopsis halleri with different RE levels. The contents of As, Cd, and Pb in the liver and kidneys of the animals reflected the element contents in the diet. Higher Cd and Pb accumulation ability was observed in A. sylvaticus compared to M. arvalis tissues, and an opposite pattern was recorded for As. Zn contents in tissues of both species remained unchanged, and total contents of Zn in the exposed animals even tended to decrease compared to the controls. Results of this study indicate a generally similar response of both species to elevated RE contents in the diet, confirming these wild rodents as suitable models for RE biomonitoring in ecosystems. However, our data highlights some distinction in As toxicokinetics in wood mice compared to that of field voles and a significantly higher accumulation of Pb and Cd in females. Therefore, factors of species and sex should not be overlooked if relevant data are to be obtained in environmental studies conducted on small terrestrial rodents.


Assuntos
Cádmio , Ecossistema , Feminino , Camundongos , Animais , Solo , Disponibilidade Biológica , Chumbo , Murinae , Mamíferos , Arvicolinae
8.
Environ Sci Pollut Res Int ; 30(5): 11378-11398, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36529801

RESUMO

The study used scattered literature to summarize the effects of excess Cd, As, and Pb from contaminated soils on plant secondary metabolites/bioactive compounds (non-nutrient organic substances). Hence, we provided a systematic overview involving the sources and forms of Cd, As, and Pb in soils, plant uptake, mechanisms governing the interaction of these risk elements during the formation of secondary metabolites, and subsequent effects. The biogeochemical characteristics of soils are directly responsible for the mobility and bioavailability of risk elements, which include pH, redox potential, dissolved organic carbon, clay content, Fe/Mn/Al oxides, and microbial transformations. The radial risk element flow in plant systems is restricted by the apoplastic barrier (e.g., Casparian strip) and chelation (phytochelatins and vacuole sequestration) in roots. However, bioaccumulation is primarily a function of risk element concentration and plant genotype. The translocation of risk elements to the shoot via the xylem and phloem is well-mediated by transporter proteins. Besides the dysfunction of growth, photosynthesis, and respiration, excess Cd, As, and Pb in plants trigger the production of secondary metabolites with antioxidant properties to counteract the toxic effects. Eventually, this affects the quantity and quality of secondary metabolites (including phenolics, flavonoids, and terpenes) and adversely influences their antioxidant, antiinflammatory, antidiabetic, anticoagulant, and lipid-lowering properties. The mechanisms governing the translocation of Cd, As, and Pb are vital for regulating risk element accumulation in plants and subsequent effects on secondary metabolites.


Assuntos
Metais Pesados , Poluentes do Solo , Antioxidantes , Biodegradação Ambiental , Cádmio/metabolismo , Chumbo , Metais Pesados/análise , Solo/química , Poluentes do Solo/análise
9.
Environ Sci Pollut Res Int ; 30(1): 337-351, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35896881

RESUMO

The North Bohemian Brown Coal Basin (Czech Republic) is suggested as a source of significant pollution in the surrounding environment with various pollutants, including risk elements. A total of 53 sampling points were selected within the North Bohemian region. The selected sampling points represented either the basin areas (affected by the coal mining and related activities) or the mountain areas (an area unaffected by the coal mining but characterized by the geogenic sources of the risk elements). At each of the sampling points, soils and respective dominant indigenous plant samples were collected. A suite of ecological indices, namely, individual pollution index (Ii), Nemerow index (PN), bioaccumulation factor (BAF), translocation factor (TF), and hazard quotient (HQ), were applied to estimate the environmental risk of As, Be, Cd, and Zn levels in soils, potential soil-plant transfer, and soil-plant-animal transport of these stated elements. The results from Ii showed that the maximum values of As, Be, Cd, and Zn in the investigated soils exceeded the preventive values, where the Ii value was up to 58 for As in the mountain areas, indicating severe pollution. At the same time, mild pollution was recorded in the case of Cd. For Be in the researched soils, its Ii assessment result was a wide range, varying between a clean environment and severe pollution. Whereas As and Be uptake by plants was limited and these elements were retained in the plant's roots, relatively high mobility and soil to plant shoots transport ability of Cd were recorded and documented by the TF values. The HQs calculated for selected herbivorous mammals in the area showed that the potential health risk of As and Be was limited to only plant roots in the hotspots with extreme As and Be contents. In comparison, substantial health risk of Cd was observed in the aboveground biomass of plants. Therefore, the potential remediation of the coal mining areas should be focused on (i) identification of the As and Be hotspots and (ii) to reduce the mobility and plant availability of Cd in the whole investigated area.


Assuntos
Minas de Carvão , Metais Pesados , Poluentes do Solo , Animais , Solo , Metais Pesados/análise , Cádmio/análise , Carvão Mineral , Monitoramento Ambiental/métodos , Mineração , Plantas , Poluentes do Solo/análise , Medição de Risco , Mamíferos
10.
Acta Vet Hung ; 70(4): 296-304, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36350570

RESUMO

Although domestic cats are one of the most popular companion animals, current knowledge on the fate of micronutrients in cats according to their age, sex, and health is very limited. In this study, 72 whole blood and 54 plasma samples from cats of different ages and sex were collected at three veterinary offices in the Czech Republic, and the copper (Cu), selenium (Se), and zinc (Zn) concentrations were determined using inductively coupled plasma mass spectrometry (ICP-MS). The results showed that Cu was significantly (P < 0.05) higher in both plasma and whole blood of males (980 and 958 µg L-1 in plasma and whole blood, respectively) than in females (741 and 766 µg L-1 in plasma and whole blood, respectively), whereas no significant differences between males and females were found for Se and Zn. Similarly, no significant differences were recorded for any of the three elements according to age, although animals older than 7 years tended to have lower plasma concentrations of all three elements. Hypertrophic cardiomyopathy (HCM) is one of the most prevalent diseases of domestic cats. The potential relationship between the essential microelement status in the blood of cats with HCM vs. cats with no clinical signs of HCM was taken into account, but the limited number of HCM-positive individuals did not allow any clear conclusion. Thus, the potential relationships between micronutrient status in cats and the incidence of HCM should be elucidated in further research.


Assuntos
Selênio , Oligoelementos , Masculino , Feminino , Gatos , Animais , Zinco , Cobre
11.
Sci Rep ; 12(1): 12690, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35879523

RESUMO

Biochar made-up of dry olive residue (DOR), a biomass resulting from the olive oil extraction industry, has been proposed to be used as a reclamation agent for the recovery of metal contaminated soils. The aim of the present study was to investigate whether the soil application of DOR-based biochar alone or in combination with arbuscular mycorrhizal fungi (AMF) leads to an enhancement in the functionality and abundance of microbial communities inhabiting metal contaminated soils. To study that, a greenhouse microcosm experiment was carried out, where the effect of the factors (i) soil application of DOR-based biochar, (ii) biochar pyrolysis temperature (considering the variants 350 and 500 °C), (iii) soil application dose of biochar (2 and 5%), (iv) soil contamination level (slightly, moderately and highly polluted), (v) soil treatment time (30, 60 and 90 days) and (vi) soil inoculation with Funneliformis mosseae (AM fungus) on ß-glucosidase and dehydrogenase activities, FA (fatty acid)-based abundance of soil microbial communities, soil glomalin content and AMF root colonization rates of the wheat plants growing in each microcosm were evaluated. Biochar soil amendment did not stimulate enzyme activities but increased microbial abundances. Dehydrogenase activity and microbial abundances were found to be higher in less contaminated soils and at shorter treatment times. Biochar pyrolysis temperature and application dose differently affected enzyme activities, but while the first factor did not have a significant effect on glucosidase and dehydrogenase, a higher biochar dose resulted in boosted microbial abundances. Soil inoculation with F. mosseae favored the proliferation of soil AMF community and increased soil glomalin content as well as rates of AMF root colonization. This factor also interacted with many of the others evaluated to significantly affect soil enzyme activities, microbial abundances and AMF community. Our results indicate that the application of DOR-based biochar along with AMF fungi is an appropriate approach to improve the status of microbial communities in soils with a moderate metal contamination at short-term.


Assuntos
Micorrizas , Olea , Poluentes do Solo , Carvão Vegetal , Fungos , Metais/farmacologia , Micorrizas/química , Oxirredutases , Raízes de Plantas/química , Solo/química , Microbiologia do Solo , Poluentes do Solo/análise
12.
Sci Total Environ ; 838(Pt 4): 156630, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35697216

RESUMO

The phytoextraction potential of short-rotation field coppice plantations was investigated on soil historically contaminated with risk elements (REs), especially Cd, Pb and Zn. The main objective of the study was to assess the effect of biomass harvest time (summer harvest versus traditional winter one) on biomass yield, REs accumulation and removal in the long-term study. The precise field experiment with two Salix clones and two Populus clones was established in April 2009. Shoots of all clones were harvested in February 2012 for the first time, and then identical branches and leaves were harvested every two years in September (summer harvest = SH) and the branches every two years in February (winter harvest = WH). The first summer harvest seemed to be more promising compared to the winter one, but the yields in the second and third harvests were inconsistent. The total phytoextraction efficiency of the SH declined in second and third harvests due to a decrease of leaves/aboveground biomass ratio, and the RE concentrations in leaves. Clonal Salix smithiana was the most productive one in the SH, with a dry matter yield of 15.1 t ha-1 year-1 and showed promising extraction ability for Cd (11.65 %) and Zn (4.59 %) over a 6-year field experiment. A lower portion of Cd (6.97 %) and Zn (2.38 %) was removed by this clone in the WH (calculated from the total soil content of REs). SH was more reasonable for phytoextraction compared to WH. Higher RE concentrations were found in leaves of Salix compared to Populus. Populus accumulated the highest Pb content in the branches; unfortunately, the Pb extraction was low, due to extremely high soil Pb contamination. Locally bred willows and poplars performed substantially better than internationally recognised ones, indicating the importance of phytoremediation optimisation, including clone selection, for suitable climatic conditions.


Assuntos
Metais Pesados , Populus , Salix , Poluentes do Solo , Biodegradação Ambiental , Biomassa , Cádmio/análise , Células Clonais/química , Chumbo , Metais Pesados/análise , Melhoramento Vegetal , Estações do Ano , Solo , Poluentes do Solo/análise
13.
Environ Microbiome ; 17(1): 13, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35346385

RESUMO

BACKGROUND: Although fertilization and crop rotation practices are commonly used worldwide in agriculture to maximize crop yields, their long-term effect on the structures of soil microorganisms is still poorly understood. This study investigated the long-term impact of fertilization and crop rotation on soil microbial diversity and the microbial community structure in four different locations with three soil types. Since 1996, manure (MF; 330 kg N/ha), sewage sludge (SF; 330 and SF3x; 990 kg N/ha), and NPK (NPK; 330 kg N/ha) fertilizers were periodically applied to the soils classified as chernozem, luvisol and cambisol, which are among the most abundant or fertile soils used for agricultural purposes in the world. In these soils, potato (Solanum tuberosum L.), winter wheat (Triticum aestivum L.), and spring barley (Hordeum vulgare L.) were rotated every three years. RESULTS: Soil chemistry, which was significantly associated with location, fertilization, crop rotation, and the interaction of fertilization and location, was the dominant driver of soil microbial communities, both prokaryotic and fungal. A direct effect of long-term crop rotation and fertilization on the structure of their communities was confirmed, although there was no evidence of their influence on microbial diversity. Fungal and bacterial communities responded differently to fertilization treatments; prokaryotic communities were only significantly different from the control soil (CF) in soils treated with MF and SF3x, while fungal communities differed across all treatments. Indicator genera were identified for different treatments. These taxa were either specific for their decomposition activities or fungal plant pathogens. Sequential rotation of the three crops restricted the growth of several of the indicator plant pathogens. CONCLUSIONS: Long-term fertilization and crop rotation significantly altered microbial community structure in the soil. While fertilization affected soil microorganisms mainly through changes in nutrient profile, crop rotations lead to the attraction and repulsion of specific plant pathogens. Such changes in soil microbial communities need to be considered when planning soil management.

14.
Plants (Basel) ; 11(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35214898

RESUMO

The status of macronutrients phosphorus (P), potassium (K), sulphur (S), calcium (Ca) and magnesium (Mg) was assessed 15 years after the establishment of a long-term crop rotation and soil tillage trial with mouldboard ploughing (MP), no-till (NT), deep conservation tillage (CTd) and shallow conservation tillage (CTs). The mobile proportions of macronutrients in an Austrian Chernozem soil were determined to a depth of 50 cm with the single reagent extractant acetic acid (AA) and Mehlich 3 (M3), which uses several reagents as extractants. AA revealed less P and K, but more Ca and Mg compared to M3. Both extractants could capture the distribution pattern of the nutrients in the soil profile, but M3 showed higher differences among the soil layers. In the first 5 cm in NT, the P concentration was higher than in MP, CTd and CTs. The concentration of K was higher in NT, CTd and CTs than in MP in the first 10 cm of the soil. Phosphorus and K concentrations did not differ between tillage treatments below these soil layers, and S, Ca and Mg were similar in all soil layers. As none of the analysed elements except for Ca were fertilized and no accumulation of S, Ca and Mg was observed in the upper soil layer, the higher concentrations are attributed to accumulation through crop residues and then less leaching of P and K. Crop rotation did not affect the distribution of the analysed macronutrients in the soil but affected the nutrient uptake by winter wheat mostly due to the yield differences of winter wheat in the two crop rotations.

15.
Environ Geochem Health ; 44(3): 943-959, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34129137

RESUMO

Long-term brown coal mining contributes to risk element contents in soils surrounding coal basins. However, there is a lack of bioaccessibility characterization of the risk elements in the soils at the impacted locations for estimation of the potential health risk, in relation to the effects of soil particle size and element origin. In this study, soils from different geological areas (geogenic vs. anthropogenic) were sampled around the Most brown coal basin, Czech Republic. These soils were passed through sieves to obtain seven aggregate size fractions. For an estimation of the oral bioaccessibility of As and Pb in the size fractions, the physiologically based extraction test was applied, whereas the potential pulmonary bioaccessibility of the elements was estimated by using both Gamble's and Hatch's tests. The results showed that the geochemical pattern of the investigated elements clearly separates the soil samples collected from the mountain region (mineralization from geogenic processes) from those of the basin region (extensive coal mining). For As, the results indicated that it poses higher risks in the anthropogenically affected basin region due to its higher gastro-intestinal and pulmonary bioaccessibility in soil samples in this area. A higher bioaccessibility of As in the soils was recorded in the finer grain size fractions, which are usually air-borne and can be easily ingested and/or inhaled, leading to potential health risks to humans and livestock. The opposite pattern, with a higher content on coarse particles, was recorded for Pb, indicating a potential risk of livestock in the non-forest mountainous areas.


Assuntos
Arsênio , Minas de Carvão , Poluentes do Solo , Arsênio/análise , Disponibilidade Biológica , Humanos , Chumbo , Solo/química , Poluentes do Solo/análise
16.
Sci Rep ; 11(1): 5711, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33707651

RESUMO

This study aimed on the increasing nitrogen use efficiency (NUE) of maize via the use of high temperature produced biochar (700 °C). Maize was grown to maturity on two contrasting soils (acidic Cambisol and neutral Chernozem) in pots with a treatment of biochar co-applied with ammonium sulphate stabilised by a nitrification inhibitor (3,4-dimethylpyrazole-phosphate, DMPP) or un-stabilised. The combination of biochar with ammonium sulphate containing DMPP increased maize biomass yield up to 14%, N uptake up to 34% and NUE up to 13.7% compared to the sole application of ammonium sulphate containing DMPP. However, the combination of biochar with un-stabilised ammonium sulphate (without DMPP) had a soil-specific influence and increased maize biomass only by 3.8%, N uptake by 27% and NUE by 11% only in acidic Cambisol. Further, the biochar was able to increase the uptake of phosphorus (P) and potassium (K) in both stabilised and un-stabilised treatments of ammonium sulphate. Generally, this study demonstrated a superior effect from the combined application of biochar with ammonium sulphate containing DMPP, which improved NUE, uptake of P, K and increased maize biomass yield. Such a combination may lead to higher efficiency of fertilisation practices and reduce the amount of N fertiliser to be applied.

17.
Environ Monit Assess ; 193(2): 68, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33462650

RESUMO

The city of Litvínov (North Bohemia, Czech Republic) is seriously affected by coal mining, coal processing, and intensive industrial activities. Within the urban area, the potential environmental hazard of risk elements (in soil and vegetation) and polycyclic aromatic hydrocarbons (PAHs, in soils) was estimated using selected environmental and human health hazard indices. In total, 24 sites were sampled, including the city center, residential areas, industrialized zone, and areas close to operating and/or abandoned coal mines. The results showed elevated values of As, Cd, Cu, Ni, Pb, and Zn in soils (the maximum levels of individual pollution indices varied between 3 and 5 for As, Pb, and Zn); the risk assessment code (RAC) values indicated high bioaccessibility of Cd and Zn. The high mobility of Cd was confirmed by their bioaccumulation factors (BAF) in the aboveground biomass of Taraxacum sect. Ruderalia and Polygonum aviculare, reaching up to 1.9 and 2.9, respectively. The Cd content in plants presents a substantial health hazard for herbivores such as Oryctolagus cuniculus living within the urban area. The PAH levels in the soils also showed elevated values; the contents of benzo(a)pyrene exceeded more than 2-fold the indicative values for potential health risk for biota, especially near the abandoned coal mines. The incremental lifetime cancer risks (ILCR) for ingestion of the contaminated soil showed only low or negligible cancerogenic risk, varying between 6.7 × 10-7 and 1.6 × 10-5 for children, and between 9.9 × 10-7 and 2.7 × 10-6 for adults. However, the potential health impact of the inhalation of the contaminated particulate matter should be included in the further research. Although the contamination level in the investigated area does not represent an imminent environmental and health risk, the potential remediation measures should be considered in the future.


Assuntos
Poluentes Ambientais , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Adulto , Animais , Criança , Cidades , República Tcheca , Monitoramento Ambiental , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análise , Coelhos , Medição de Risco , Solo , Poluentes do Solo/análise
18.
J Hazard Mater ; 405: 124278, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33168310

RESUMO

Biosolids were applied as a fertilizer after drying, torrefaction (220, 320 °C), and pyrolysis (420, 520, 620 °C). Lettuce was grown on contrasting soils, and the transfer of pharmaceuticals to aboveground biomass was assessed. Of 42 compounds detected in dried biosolids, 10 were found in lettuce. Their potency for translocation to aerial parts was in the order: ethenzamide > carbamazepine > mirtazapine~tramadol > N-desmethyltramadol~solifenacin > sertraline~trazodone~venlafaxine > propafenone. Application of dried biosolids resulted in the highest uptake of pharmaceuticals and the neutral soil further intensified the uptake due to prevalent neutral speciation of the ionizable basic molecules. Torrefaction reduced the total pharmaceutical content in biosolids by 92.2% and 99.5% at 220 and 320 °C, respectively. Torrefied biosolids significantly reduced the uptake of pharmaceuticals and led to the highest biomass on acidic soil but were phytotoxic on the neutral soil. Pyrolysed biosolids increased the biomass production of lettuce on both soils and blocked the uptake of pharmaceuticals. A minimum biosolids pyrolysis temperature of 420 °C should be ensured prior to soil application as it represents a good compromise between fertilization potential, pharmaceutical uptake, and homogeneity of plant response regardless of the soil characteristics.


Assuntos
Preparações Farmacêuticas , Poluentes do Solo , Biossólidos , Pirólise , Solo , Poluentes do Solo/análise
19.
Microorganisms ; 8(9)2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32911685

RESUMO

An understanding of how fertilization influences endophytes is crucial for sustainable agriculture, since the manipulation of the plant microbiome could affect plant fitness and productivity. This study was focused on the response of microbial communities in the soil and tubers to the regular application of manure (MF; 330 kg N/ha), sewage sludge (SF; 330 and SF3x; 990 kg N/ha), and chemical fertilizer (NPK; 330-90-300 kg N-P-K/ha). Unfertilized soil was used as a control (CF), and the experiment was set up at two distinct sites. All fertilization treatments significantly altered the prokaryotic and fungal communities in soil, whereas the influence of fertilization on the community of endophytes differed for each site. At the site with cambisol, prokaryotic and fungal endophytes were significantly shifted by MF and SF3 treatments. At the site with chernozem, neither the prokaryotic nor fungal endophytic communities were significantly associated with fertilization treatments. Fertilization significantly increased the relative abundance of the plant-beneficial bacteria Stenotrophomonas, Sphingomonas and the arbuscular mycorrhizal fungi. In tubers, the relative abundance of Fusarium was lower in MF-treated soil compared to CF. Although fertilization treatments clearly influenced the soil and endophytic community structure, we did not find any indication of human pathogens being transmitted into tubers via organic fertilizers.

20.
J Hazard Mater ; 384: 121468, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31761648

RESUMO

Sewage sludge application to soil is of great interest, due to required organic matter and the wide spectra of nutrients it provides. However, the presence of unpredictable content of emerging contaminants may turn this valuable raw material into a hazardous substance. In this study, three selected sewage sludges derived micropollutants from different origins; that is, one each under persistent organic pollutants (POPs), pharmaceuticals and personal care products (PPCPs) were considered. The effect of each micropollutant on the feeding activity of free-living soil nematode Caenorhabditis elegans was analysed. The analysis was performed in model soil solution using a larval feeding inhibition assay. The results showed no significant effects from selected POP-2,2',4,4',5-pentabromodiphenyl either and pharmaceutical-chlortetracycline on the feeding activity of tested nematodes. On the contrary, feeding activity was inhibited by PPCP-galaxolide (HHCB) with an effective concentration of 12.2 ±â€¯2.2 mg.l-1. The calculated risk quotient for galaxolide (RQ = 0.14) demonstrated a medium ecological risk to the nematodes. Based on our findings, concentrations of micropollutants in sewage sludge treated soil pose negligible risk to feeding activity of soil nematode. However, the potential impact of musk compounds on free-living soil biota requires detailed evaluation in further research.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Esgotos , Animais , Testes de Toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...