Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(8)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37109838

RESUMO

The novel, single-sample concept combinatorial method, the so-called micro-combinatory technique, has been shown to be suitable for the high-throughput and complex characterization of multicomponent thin films over an entire composition range. This review focuses on recent results regarding the characteristics of different binary and ternary films prepared by direct current (DC) and radiofrequency (RF) sputtering using the micro-combinatorial technique. In addition to the 3 mm diameter TEM grid used for microstructural analysis, by scaling up the substrate size to 10 × 25 mm, this novel approach has allowed for a comprehensive study of the properties of the materials as a function of their composition, which has been determined via transmission electron microscopy (TEM), scanning electron microscopy (SEM), Rutherford backscattering spectrometry (RBS), X-ray diffraction analysis (XRD), atomic force microscopy (AFM), spectroscopic ellipsometry, and nanoindentation studies. Thanks to the micro-combinatory technique, the characterization of multicomponent layers can be studied in greater detail and efficiency than before, which is beneficial for both research and practical applications. In addition to new scientific advances, we will briefly explore the potential for innovation with respect to this new high-throughput concept, including the creation of two- and three-component thin film databases.

2.
Microsc Res Tech ; 78(7): 599-602, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25989619

RESUMO

Transmission electron microscopy (TEM) sample preparation requires special skills, it is time consuming and costly, hence, an increase of the efficiency is of primary importance. This article describes a method that duplicates the yield of the conventional mechanical and ion beam preparation of plan-view TEM samples. As a modification of the usual procedures, instead of one two different samples are comprised in a single specimen. The two pre-cut slabs, one from each samples, are embedded side by side in the window of a 3 mm dia Ti disk and the specimen is thinned mechanically and by ion milling until perforation that occurs at the interface of the two different slabs. That, with proper implementation, provides acceptable size thin area for the TEM study of both samples. The suitability of the two-in-one method has been confirmed through examples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...