Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(11): e0293816, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37992043

RESUMO

Viking sailors ruled the North Atlantic Ocean for about three hundred years. Their main sailing route was the 60° 21' 55'' latitude between Norway and Greenland. Although they did not have a magnetic compass, in sunshine they used a sun-compass to determine the geographical north (solar Viking navigation: SVN). It has been hypothesized that when the Sun was invisible, Viking navigators determined the direction of polarization of skylight with sunstones (dichroic/birefringent crystals), and then estimated the geographical north using the sun-compass (sky-polarimetric Viking navigation: SPVN). Many details of the hypothetical SPVN have been thoroughly revealed in psychophysical laboratory and planetarium experiments. Combining these results with measured celestial polarization patterns, the success of SPVN was obtained as functions of sailing, meteorological and navigation parameters (sunstone type, sailing date, navigation periodicity, night sailing, cloudiness conditions). What was so far lacking in this experimental and computational archeological approach is the study of the success of SVN and a combined navigation using solar cues in sunshine (SVN) and sky polarization at invisible Sun (SPVN), the latter being the most realistic method. In this work we determine the success of the sole SVN and the combined SVN-SPVN relative to the mere SPVN for three navigator types (determining the intended sailing direction with large, medium or small frequencies) at spring equinox and summer solstice, with and without night sailing. We found that to maximize the sailing success, navigators had to choose different navigation methods depending on the navigation frequency. Using sky polarization with very frequent navigation, resulted in the highest chance to survive a three-week voyage from Norway to Greenland.


Assuntos
Besouros , Esportes , Animais , Luz Solar , Movimento (Física) , Estações do Ano , Sinais (Psicologia)
2.
Int J Parasitol ; 53(1): 1-11, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36356641

RESUMO

Several hypotheses tried to explain the advantages of zebra stripes. According to the most recent explanation, since the borderlines of sunlit white and black stripes can hamper thermal vessel detection by blood-seeking female horseflies, striped host animals are unattractive to these parasites which prefer hosts with a homogeneous coat, on which the temperature gradients above blood vessels can be detected more easily. This hypothesis has been tested in a field experiment with horseflies walking on a grey barrel with thin black stripes which were slightly warmer than their grey surroundings in sunshine, while in shade both areas had practically the same temperature. To eliminate the multiple (optical and thermal) cues of this test target, we repeated this experiment with improved test surfaces: we attracted horseflies by water- or host-imitating homogeneous black test surfaces, beneath which a heatable wire ran. When heated, this invisible and mechanically impalpable wire imitated thermally the slightly warmer subsurface blood vessels, otherwise it was thermally imperceptible. We measured the times spent by landed and walking horseflies on the test surface parts with and without underlying heated or unheated wire. We found that walking female and male horseflies had no preference for any (wired or wireless) area of the water-imitating horizontal plane test surface on the ground, independent of the temperature (heated or unheated) of the underlying wire. These horseflies looked for water, rather than a host. On the other hand, in the case of host-imitating test surfaces, female horseflies preferred the thin surface regions above the wire only if it was heated and thus warmer than its surroundings. This behaviour can be explained exclusively with the higher temperature of the wire given the lack of other sensorial cues. Our results prove the thermal vessel recognition of female horseflies and support the idea that sunlit zebra stripes impede the thermal detection of a host's vessels by blood-seeking horseflies, the consequence of which is the visual (non-thermal) unattractiveness of zebras to horseflies.


Assuntos
Dípteros , Equidae , Animais , Feminino , Masculino , Equidae/parasitologia , Temperatura Alta , Temperatura , Água , Interações Hospedeiro-Parasita , Termografia , Termorreceptores
3.
Sci Rep ; 12(1): 10871, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927437

RESUMO

Multiple hypotheses have been proposed for possible functions of zebra stripes. The most thoroughly experimentally supported advantage of zebra stripes is their visual unattractiveness to horseflies (tabanids) and tsetse flies. We propose here a plausible hypothesis why biting horseflies avoid host animals with striped pelages: in sunshine the temperature gradients of the skin above the slightly warmer blood vessels are difficult to distinguish from the temperature gradients induced by the hairs at the borderlines of warmer black and cooler white stripes. To test this hypothesis, we performed a field experiment with tabanids walking on a host-imitating grey test target with vessel-mimicking thin black stripes which were slightly warmer than their grey surroundings in sunshine, while under shady conditions both areas had practically the same temperature as demonstrated by thermography. We found that horseflies spend more time walking on thin black stripes than surrounding grey areas as expected by chance, but only when the substrate is sunlit. This is because the black stripes are warmer than the surrounding grey areas in the sun, but not in the shade. This is consistent with the flies' well-documented attraction to warmer temperatures and provides indirect support for the proposed hypothesis. The frequent false vessel locations at the numerous black-white borderlines, the subsequent painful bitings with unsuccessful blood-sucking attempts and the host's fly-repellent reactions enhance considerably the chance that horseflies cannot evade host responses and are swatted by them. To eliminate this risk, a good evolutionary strategy was the avoidance of striped (and spotted) host animals.


Assuntos
Dípteros , Equidae , Animais , Dípteros/fisiologia , Equidae/fisiologia , Percepção , Temperatura , Termografia
4.
Front Plant Sci ; 13: 842560, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371122

RESUMO

Mature sunflower (Helianthus annuus) inflorescences, which no longer follow the Sun, face the eastern celestial hemisphere. Whether they orient toward the azimuth of local sunrise or the geographical east? It was recently shown that they absorb maximum light energy if they face almost exactly the geographical east, and afternoons are usually cloudier than mornings. However, the exact average and standard deviation (SD) of the azimuth angle of the normal vector of mature sunflower inflorescences have never been measured on numerous individuals. It is imaginable that they prefer the direction of sunrise rather than that of the geographical east. To decide between these two photobiological possibilities, we photographed mature inflorescences of 14 sunflower plantations using a drone and determined the average and SD of the azimuth angle of the normal vector of 2,800 sunflower heads. We found that the average azimuth αinflorescence = 89.5° ± 42.8° (measured clockwise from the geographical north) of inflorescences practically coincided with the geographical eastern direction (αeast = 90°) instead of the azimuth of local sunrise αsunrise = 56.14° - 57.55°. Although the SD of the orientation of individual inflorescences was large (± 42.8°), our finding experimentally corroborated the earlier theoretical prediction that the energetically ideal azimuth of sunflower inflorescences is east, if mornings are usually less cloudy than afternoons, which is typical for the domestication region of H. annuus. However, the average orientation of inflorescences of two plantations in hilly landscapes more or less differed from that of the majority of plantations in plane landscapes. The reason for this deviation may be that the illumination conditions in hilly sites more or less differed from those in plane landscapes. Furthermore, in a plantation, we observed a group of south-facing inflorescences that were in shadow for about 5 h both after sunrise and before sunset. This southern orientation can be explained by the southern maximum of total light energy absorbed by the partly shadowed inflorescences during the day, as computed by our software integrating both the diffuse skylight and the direct sunlight received by sunflower inflorescences.

5.
PLoS One ; 17(2): e0262762, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35108318

RESUMO

Although Viking sailors did not have a magnetic compass, they could successfully navigate with a sun-compass under a sunny sky. Under cloudy/foggy conditions, they might have applied the sky-polarimetric Viking navigation (SPVN), the high success of which has been demonstrated with computer simulations using the following input data: sky polarization patterns measured with full-sky imaging polarimetry, and error functions of the navigation steps measured in psychophysical laboratory and planetarium experiments. As a continuation of the earlier studies, in this work we investigate the sensitivity of the success of SPVN to the following relevant sailing, meteorological and navigational parameters: sunstone type, sailing date, navigation periodicity, night sailing, dominance of strongly, medium or weakly cloudy skies, and changeability of cloudiness. Randomly varying these parameters in the simulation of Viking voyages along the latitude 60° 21' 55'' N from Norway to Greenland, we determined those parameters which had strong and weak influences on the success of SPVN. The following intrinsic parameters of the simulation were also randomly changed: sailing speed, visibility distance of Greenland's southeast coastline and start time of diurnal sailing. Our results show that the sailing success is sensitive to the night sailing, navigation periodicity and sailing date, while it is robust against the sunstone type, dominance of strongly, medium or weakly cloudy skies, and changing cloudiness.


Assuntos
Simulação por Computador , Groenlândia , Noruega , Estações do Ano , Sistema Solar , Viagem , Tempo (Meteorologia)
6.
Plant Environ Interact ; 3(3): 130-139, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37284427

RESUMO

After anthesis, the majority of mature sunflower (Helianthus annuus) inflorescences face constantly East, which direction ensures maximal light energy absorbed by the inflorescences in regions where afternoons are on average cloudier than mornings. Several theories have tried to explain the function(s) of this eastward orientation. Their common assumption is that eastward facing has certain advantages for sunflowers. In sunflower plantations, the capitulum of many plants can also face North, South, or upward. Large deviations from the conducive East direction can decrease the plant's reproductive fitness. A larger mass and number of seeds, for example, can guarantee safer seed germination and better early development of more offspring. Thus, our hypothesis was that the East facing of sunflower inflorescences ensures a larger seed number and mass compared to disoriented inflorescences. This idea was tested in a sunflower plantation, where we compared the number and mass of seeds in plants, the inflorescences of which were naturally or artificially oriented northward, eastward, southward, westward, or upward. Our study tested head diameter, seed weight, and seed number in a normal agronomic field setting being different from earlier investigations. The other difference was that we tested five head orientations and only East showed significantly increased seed weight and number. Using radiational computations, we showed that East facing ensures more absorbed light energy than other orientations, except upward. This finding can be one of the reasons for the maximal seed number and mass in East-facing sunflower capitula. Although upward-facing horizontal inflorescences absorbed maximal light energy, they had the fewest and lightest seeds probably because of the larger temperature and humidity as well as the too much sunlight, all three factors impairing the normal seed development. This study is the first that compares the seed traits of all head orientations of Helianthus annuus and proposes that the absorbed radiation could play a major role in the maximal seed number and mass of east-facing heads.

7.
Sci Rep ; 11(1): 15797, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34349136

RESUMO

There is a long-lasting debate about the possible functions of zebra stripes. According to one hypothesis, periodical convective air eddies form over sunlit zebra stripes which cool the body. However, the formation of such eddies has not been experimentally studied. Using schlieren imaging in the laboratory, we found: downwelling air streams do not form above the white stripes of light-heated smooth or hairy striped surfaces. The influence of stripes on the air stream formation (facilitating upwelling streams and hindering horizontal stream drift) is negligible higher than 1-2 cm above the surface. In calm weather, upwelling air streams might form above sunlit zebra stripes, however they are blown off by the weakest wind, or even by the slowest movement of the zebra. These results forcefully contradict the thermoregulation hypothesis involving air eddies.


Assuntos
Movimentos do Ar , Regulação da Temperatura Corporal/fisiologia , Equidae/fisiologia , Cor de Cabelo/fisiologia , Cabelo/fisiologia , Luz Solar , Animais
8.
J Imaging ; 6(10)2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34460545

RESUMO

The measurement of night sky quality has become an important task in nature conservation. The primary device used for this task can be a calibrated digital camera. In addition, colour information can be derived from sky photography. In this paper, we provide a test on a concept to gather information about the possible sources of night sky brightness based on digital camera images. This method helps to understand changes in night sky quality due to natural and artificial changes in the environment. We demonstrate that a well-defined colour-colour diagram can differentiate between the different natural and artificial sources of night sky radiance. The colour information can be essential when interpreting long-term evolution of light pollution measurements.

9.
J Imaging ; 6(9)2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34460747

RESUMO

The measurement of night sky quality has become an important task in night sky conservation. Modern measurement techniques involve mainly a calibrated digital camera or a spectroradiometer. However, panchromatic devices are still prevalent to this day, even in the absence of determining the spectral information of the night sky. In the case of multispectral measurements, colour information is currently presented in multiple ways. One of the most frequently used metrics is correlated colour temperature (CCT), which is not without its limitation for the purpose of describing especially the colour of natural night sky. Moreover, visually displaying the colour of the night sky in a quantitatively meaningful way has not attracted sufficient attention in the community of astronomy and light pollution research-most photographs of the night sky are post-processed in a way for aesthetic attractiveness rather than accurate representation of the night sky. The spectrum of the natural night sky varies in a wide range depending on solar activity and atmospheric properties. The most noticeable variation in the visible range is the variation of the atomic emission lines, primarily the green oxygen and orange sodium emission. Based on the accepted models of night sky emission, we created a random spectral database which represents the possible range of night sky radiance distribution. We used this spectral database as a learning set, to create a colour transformation between different colour spaces. The spectral sensitivity of some digital cameras is also used to determine an optimal transformation matrix from camera defined coordinates to real colours. The theoretical predictions were extended with actual spectral measurements in order to test the models and check the local constituents of night sky radiance. Here, we present an extended modelling of night sky colour and recommendations of its consistent measurement, as well as methods of visualising the colour of night sky in a consistent way, namely using the false colour enhancement.

10.
Proc Math Phys Eng Sci ; 474(2214): 20170859, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29977127

RESUMO

Inspired by the pioneer work of the nineteenth century photographer, William Nicholson Jennings, we studied quantitatively how realistic painted lightnings are. In order to answer this question, we examined 100 paintings and 400 photographs of lightnings. We used our software package to process and evaluate the morphology of lightnings. Three morphological parameters of the main lightning branch were analysed: (i) number of branches Nb, (ii) relative length r, and (iii) number of local maxima (peaks) Np of the turning angle distribution. We concluded: (i) Painted lightnings differ from real ones in Nb and Np. (ii) The r-values of painted and real lightnings vary in the same range. (iii) 67 and 22% of the studied painted and real lightnings were non-bifurcating (Nb = 1, meaning only the main branch), the maximum of Nb of painted and real lightnings is 11 and 51, respectively, and painted bifurcating lightnings possess mostly 2-4 branches, while real lightnings have mostly 2-10 branches. To understand these findings, we performed two psychophysical experiments with 10 test persons, whose task was to guess Nb on photographs of real lightnings which were flashed for short time periods Δt = 0.5, 0.75 and 1 s (characteristic to lightnings) on a monitor. We obtained that (i) test persons can estimate the number of lightning branches quite correctly if Nb ≤ 11. (ii) If Nb > 11, its value is strongly underestimated with exponentially increasing difference between the real and estimated numbers. (iii) The estimation is independent of the flashing period Δt of lightning photos/pictures. (iv) The estimation is more accurate, if skeletonized lightning pictures are flashed, rather than real lightning photos. These findings explain why artists usually illustrate lightnings with branches not larger than 11.

11.
Sci Rep ; 8(1): 9351, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29921931

RESUMO

There are as many as 18 theories for the possible functions of the stripes of zebras, one of which is to cool the animal. We performed field experiments and thermographic measurements to investigate whether thermoregulation might work for zebra-striped bodies. A zebra body was modelled by water-filled metal barrels covered with horse, cattle and zebra hides and with various black, white, grey and striped patterns. The barrels were installed in the open air for four months while their core temperature was measured continuously. Using thermography, the temperature distributions of the barrel surfaces were compared to those of living zebras. The sunlit zebra-striped barrels reproduced well the surface temperature characteristics of sunlit zebras. We found that there were no significant core temperature differences between the striped and grey barrels, even on many hot days, independent of the air temperature and wind speed. The average core temperature of the barrels increased as follows: white cattle, grey cattle, real zebra, artificial zebra, grey horse, black cattle. Consequently, we demonstrate that zebra-striped coats do not keep the body cooler than grey coats challenging the hypothesis of a thermoregulatory role of zebra stripes.


Assuntos
Pele/química , Termografia/métodos , Animais , Regulação da Temperatura Corporal , Bovinos , Temperatura Baixa , Cor , Equidae , Cavalos
12.
R Soc Open Sci ; 5(4): 172187, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29765673

RESUMO

According to a famous hypothesis, Viking sailors could navigate along the latitude between Norway and Greenland by means of sky polarization in cloudy weather using a sun compass and sunstone crystals. Using data measured in earlier atmospheric optical and psychophysical experiments, here we determine the success rate of this sky-polarimetric Viking navigation. Simulating 1000 voyages between Norway and Greenland with varying cloudiness at summer solstice and spring equinox, we revealed the chance with which Viking sailors could reach Greenland under the varying weather conditions of a 3-week-long journey as a function of the navigation periodicity Δt if they analysed sky polarization with calcite, cordierite or tourmaline sunstones. Examples of voyage routes are also presented. Our results show that the sky-polarimetric navigation is surprisingly successful on both days of the spring equinox and summer solstice even under cloudy conditions if the navigator determined the north direction periodically at least once in every 3 h, independently of the type of sunstone used for the analysis of sky polarization. This explains why the Vikings could rule the Atlantic Ocean for 300 years and could reach North America without a magnetic compass. Our findings suggest that it is not only the navigation periodicity in itself that is important for higher navigation success rates, but also the distribution of times when the navigation procedure carried out is as symmetrical as possible with respect to the time point of real noon.

13.
Proc Math Phys Eng Sci ; 473(2205): 20170358, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28989312

RESUMO

According to Thorkild Ramskou's theory proposed in 1967, under overcast and foggy skies, Viking seafarers might have used skylight polarization analysed with special crystals called sunstones to determine the position of the invisible Sun. After finding the occluded Sun with sunstones, its elevation angle had to be measured and its shadow had to be projected onto the horizontal surface of a sun compass. According to Ramskou's theory, these sunstones might have been birefringent calcite or dichroic cordierite or tourmaline crystals working as polarizers. It has frequently been claimed that this method might have been suitable for navigation even in cloudy weather. This hypothesis has been accepted and frequently cited for decades without any experimental support. In this work, we determined the accuracy of this hypothetical sky-polarimetric Viking navigation for 1080 different sky situations characterized by solar elevation θ and cloudiness ρ, the sky polarization patterns of which were measured by full-sky imaging polarimetry. We used the earlier measured uncertainty functions of the navigation steps 1, 2 and 3 for calcite, cordierite and tourmaline sunstone crystals, respectively, and the newly measured uncertainty function of step 4 presented here. As a result, we revealed the meteorological conditions under which Vikings could have used this hypothetical navigation method. We determined the solar elevations at which the navigation uncertainties are minimal at summer solstice and spring equinox for all three sunstone types. On average, calcite sunstone ensures a more accurate sky-polarimetric navigation than tourmaline and cordierite. However, in some special cases (generally at 35° ≤ θ ≤ 40°, 1 okta ≤ ρ ≤ 6 oktas for summer solstice, and at 20° ≤ θ ≤ 25°, 0 okta ≤ ρ ≤ 4 oktas for spring equinox), the use of tourmaline and cordierite results in smaller navigation uncertainties than that of calcite. Generally, under clear or less cloudy skies, the sky-polarimetric navigation is more accurate, but at low solar elevations its accuracy remains relatively large even at high cloudiness. For a given ρ, the absolute value of averaged peak North uncertainties dramatically decreases with increasing θ until the sign (±) change of these uncertainties. For a given θ, this absolute value can either decrease or increase with increasing ρ. The most advantageous sky situations for this navigation method are at summer solstice when the solar elevation and cloudiness are 35° ≤ θ ≤ 40° and 2 oktas ≤ ρ ≤ 3 oktas.

14.
R Soc Open Sci ; 4(2): 160688, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28386426

RESUMO

If a human looks at the clear blue sky from which light with high enough degree of polarization d originates, an 8-shaped bowtie-like figure, the yellow Haidinger's brush can be perceived, the long axis of which points towards the sun. A band of high d arcs across the sky at 90° from the sun. A person can pick two points on that band, observe the yellow brushes and triangulate the position of the sun based on the orientation of the two observed brushes. This method has been suggested to have been used on the open sea by Viking navigators to determine the position of the invisible sun occluded by cloud or fog. Furthermore, Haidinger's brushes can also be used to locate the sun when it is below the horizon or occluded by objects on the horizon. To determine the position of the sun using the celestial polarization pattern, the d of the portion of the sky used must be greater than the viewer's degree of polarization threshold d* for perception of Haidinger's brushes. We studied under which sky conditions the prerequisite d > d* is satisfied. Using full-sky imaging polarimetry, we measured the d-pattern of skylight in the blue (450 nm) spectral range for 1296 different meteorological conditions with different solar elevation angles θ and per cent cloud cover ρ. From the measured d-patterns of a given sky we determined the proportion P of the sky for which d > d*. We obtained that P is the largest at low solar elevations θ ≈ 0° and under totally or nearly clear skies with cloud coverage ρ = 0%, when the sun's position is already easily determined. If the sun is below the horizon (-5° ≤ θ < 0°) during twilight, P = 76.17 ± 4.18% for [Formula: see text] under clear sky conditions. Consequently, the sky-polarimetric Viking navigation based on Haidinger's brushes is most useful after sunset and prior to sunrise, when the sun is not visible and large sky regions are bright, clear and polarized enough for perception of Haidinger's brushes.

15.
R Soc Open Sci ; 4(11): 171166, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29291103

RESUMO

Numerous negative ecological effects of urban lighting have been identified during the last decades. In spite of the development of lighting technologies, the detrimental effect of this form of light pollution has not declined. Several insect species are affected including the night-swarming mayfly Ephoron virgo: when encountering bridges during their mass swarming, these mayflies often fall victim to artificial lighting. We show a simple method for the conservation of these mayflies exploiting their positive phototaxis. With downstream-facing light-emitting diode beacon lights above two tributaries of the river Danube, we managed to guide egg-laying females to the water and prevent them from perishing outside the river near urban lights. By means of measuring the mayfly outflow from the river as a function of time and the on/off state of the beacons, we showed that the number of mayflies exiting the river's area was practically zero when our beacons were operating. Tributaries could be the sources of mayfly recolonization in case of water quality degradation of large rivers. The protection of mayfly populations in small rivers and safeguarding their aggregation and oviposition sites is therefore important.

16.
Proc Math Phys Eng Sci ; 472(2191): 20160171, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27493566

RESUMO

The theory of sky-polarimetric Viking navigation has been widely accepted for decades without any information about the accuracy of this method. Previously, we have measured the accuracy of the first and second steps of this navigation method in psychophysical laboratory and planetarium experiments. Now, we have tested the accuracy of the third step in a planetarium experiment, assuming that the first and second steps are errorless. Using the fists of their outstretched arms, 10 test persons had to estimate the elevation angles (measured in numbers of fists and fingers) of black dots (representing the position of the occluded Sun) projected onto the planetarium dome. The test persons performed 2400 elevation estimations, 48% of which were more accurate than ±1°. We selected three test persons with the (i) largest and (ii) smallest elevation errors and (iii) highest standard deviation of the elevation error. From the errors of these three persons, we calculated their error function, from which the North errors (the angles with which they deviated from the geographical North) were determined for summer solstice and spring equinox, two specific dates of the Viking sailing period. The range of possible North errors ΔωN was the lowest and highest at low and high solar elevations, respectively. At high elevations, the maximal ΔωN was 35.6° and 73.7° at summer solstice and 23.8° and 43.9° at spring equinox for the best and worst test person (navigator), respectively. Thus, the best navigator was twice as good as the worst one. At solstice and equinox, high elevations occur the most frequently during the day, thus high North errors could occur more frequently than expected before. According to our findings, the ideal periods for sky-polarimetric Viking navigation are immediately after sunrise and before sunset, because the North errors are the lowest at low solar elevations.

17.
Physiol Behav ; 163: 219-227, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27178399

RESUMO

Like other aquatic insects, mayflies are positively polarotactic and locate water surfaces by means of the horizontal polarization of water-reflected light. However, may vertically polarized light also have implications for the swarming behaviour of mayflies? To answer this question, we studied in four field experiments the behavioural responses of Ephoron virgo and Caenis robusta mayflies to lamps emitting horizontally and vertically polarized and unpolarized light. In both species, unpolarized light induces positive phototaxis, horizontally polarized light elicits positive photo- and polarotaxis, horizontally polarized light is much more attractive than unpolarized light, and vertically polarized light is the least attractive if the stimulus intensities and spectra are the same. Vertically polarized light was the most attractive for C. robusta if its intensity was about two and five times higher than that of the unpolarized and horizontally polarized stimuli, respectively. We suggest that the mayfly behaviour observed in our experiments may facilitate the stability of swarming above water surfaces. Beside the open water surface reflecting horizontally polarized light, the shadow and mirror image of riparian vegetation at the edge of the water surface reflect weakly and non-horizontally (mainly vertically) polarized light. Due to their positive polarotaxis, flying mayflies remain continuously above the water surface, because they keep away from the unpolarized or non-horizontally polarizing edge regions (water surface and coast line) of water bodies. We also discuss how our findings can explain the regulation of mayfly colonization.


Assuntos
Ecossistema , Ephemeroptera/fisiologia , Luz , Percepção Visual/fisiologia , Animais , Voo Animal/fisiologia , Água
18.
R Soc Open Sci ; 3(1): 150406, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26909167

RESUMO

According to an old but still unproven theory, Viking navigators analysed the skylight polarization with dichroic cordierite or tourmaline, or birefringent calcite sunstones in cloudy/foggy weather. Combining these sunstones with their sun-dial, they could determine the position of the occluded sun, from which the geographical northern direction could be guessed. In psychophysical laboratory experiments, we studied the accuracy of the first step of this sky-polarimetric Viking navigation. We measured the adjustment error e of rotatable cordierite, tourmaline and calcite crystals when the task was to determine the direction of polarization of white light as a function of the degree of linear polarization p. From the obtained error functions e(p), the thresholds p* above which the first step can still function (i.e. when the intensity change seen through the rotating analyser can be sensed) were derived. Cordierite is about twice as reliable as tourmaline. Calcite sunstones have smaller adjustment errors if the navigator looks for that orientation of the crystal where the intensity difference between the two spots seen in the crystal is maximal, rather than minimal. For higher p (greater than p crit) of incident light, the adjustment errors of calcite are larger than those of the dichroic cordierite (p crit=20%) and tourmaline (p crit=45%), while for lower p (less than p crit) calcite usually has lower adjustment errors than dichroic sunstones. We showed that real calcite crystals are not as ideal sunstones as it was believed earlier, because they usually contain scratches, impurities and crystal defects which increase considerably their adjustment errors. Thus, cordierite and tourmaline can also be at least as good sunstones as calcite. Using the psychophysical e(p) functions and the patterns of the degree of skylight polarization measured by full-sky imaging polarimetry, we computed how accurately the northern direction can be determined with the use of the Viking sun-dial under 10 different sky conditions at 61° latitude, which was one of the main Viking sailing routes. According to our expermiments, under clear skies, using calcite or cordierite or tourmaline sunstones, Viking sailors could navigate with net orientation errors [Formula: see text]. Under overcast conditions, their net navigation error depends on the sunstone type: [Formula: see text], [Formula: see text] and [Formula: see text].

19.
PLoS One ; 10(3): e0121194, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25815748

RESUMO

Ecological photopollution created by artificial night lighting can alter animal behavior and lead to population declines and biodiversity loss. Polarized light pollution is a second type of photopollution that triggers water-seeking insects to ovisposit on smooth and dark man-made objects, because they simulate the polarization signatures of natural water bodies. We document a case study of the interaction of these two forms of photopollution by conducting observations and experiments near a lamp-lit bridge over the river Danube that attracts mass swarms of the mayfly Ephoron virgo away from the river to oviposit on the asphalt road of the bridge. Millions of mayflies swarmed near bridge-lights for two weeks. We found these swarms to be composed of 99% adult females performing their upstream compensatory flight and were attracted upward toward unpolarized bridge-lamp light, and away from the horizontally polarized light trail of the river. Imaging polarimetry confirmed that the asphalt surface of the bridge was strongly and horizontally polarized, providing a supernormal ovipositional cue to Ephoron virgo, while other parts of the bridge were poor polarizers of lamplight. Collectively, we confirm that Ephoron virgo is independently attracted to both unpolarized and polarized light sources, that both types of photopollution are being produced at the bridge, and that spatial patterns of swarming and oviposition are consistent with evolved behaviors being triggered maladaptively by these two types of light pollution. We suggest solutions to bridge and lighting design that should prevent or mitigate the impacts of such scenarios in the future. The detrimental impacts of such scenarios may extend beyond Ephoron virgo.


Assuntos
Comportamento Animal/fisiologia , Poluição Ambiental , Luz , Oviposição/fisiologia , Animais , Comportamento Animal/efeitos da radiação , Ephemeroptera/fisiologia , Ephemeroptera/efeitos da radiação , Feminino , Masculino , Oviposição/efeitos da radiação
20.
Parasitol Res ; 114(3): 1087-97, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25563609

RESUMO

Although the tabanid species and populations occurring in eastern central Europe (Carpathian Basin) are thoroughly studied, there are only sporadic data about the influence of weather conditions on the abundance and activity of horseflies. To fill in this lack, in Hungary, we performed a 3-month summer survey of horsefly catches registering the weather parameters. Using common canopy traps and polarization liquid traps, we found the following: (i) rainfall, air temperature, and sunshine were the three most important factors influencing the trapping number of tabanids. (ii) The effect of relative air humidity H on tabanids was indirect through the air temperature T: H ≈ 35 % (corresponding to T ≈ 32 °C) was optimal for tabanid trapping, and tabanids were not captured for H ≥ 80 % (corresponding to T ≤ 18 °C). (iii) A fast decrease in the air pressure enhanced the trapping number of both water-seeking and host-seeking horseflies. (iv) Wind velocities larger than 10 km/h reduced drastically the number of trapped tabanids. Our data presented here may serve as a reference for further investigations of the effect of climate change on tabanids in Europe.


Assuntos
Dípteros/fisiologia , Voo Animal/fisiologia , Tempo (Meteorologia) , Animais , Clima , Hungria , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...