Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 14: 1308709, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38440231

RESUMO

Hematopoietic stem cells (HSCs) produce all blood cells throughout the life of the organism. However, the high self-renewal and longevity of HSCs predispose them to accumulate mutations. The acquired mutations drive preleukemic clonal hematopoiesis, which is frequent among elderly people. The preleukemic state, although often asymptomatic, increases the risk of blood cancers. Nevertheless, the direct role of preleukemic HSCs is well-evidenced in adult myeloid leukemia (AML), while their contribution to other hematopoietic malignancies remains less understood. Here, we review the evidence supporting the role of preleukemic HSCs in different types of blood cancers, as well as present the alternative models of malignant evolution. Finally, we discuss the clinical importance of preleukemic HSCs in choosing the therapeutic strategies and provide the perspective on further studies on biology of preleukemic HSCs.

2.
FEBS J ; 289(24): 7740-7759, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34496144

RESUMO

Hematopoietic stem cells (HSCs) give rise to all types of blood cells and self-renew their own population. The regeneration potential of HSCs has already been successfully translated into clinical applications. However, recent studies on the biology of HSCs may further extend their clinical use in future. The roles of HSCs in native hematopoiesis and in transplantation settings may differ. Furthermore, the heterogenic pool of HSCs dynamically changes during aging. These changes also involve the complex interactions of HSCs with the bone marrow niche. Here, we review the opportunities and challenges of these findings to improve the clinical use of HSCs. We describe new methods of HSCs mobilization and conditioning for the transplantation of HSCs. Finally, we highlight the research findings that may lead to overcoming the current limitations of HSC transplantation and broaden the patient group that can benefit from the clinical potential of HSCs.


Assuntos
Células-Tronco Hematopoéticas , Nicho de Células-Tronco , Humanos , Células-Tronco Hematopoéticas/metabolismo , Medula Óssea , Hematopoese , Biologia
3.
Cell Mol Life Sci ; 78(10): 4639-4651, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33787980

RESUMO

Hematopoietic system transports all necessary nutrients to the whole organism and provides the immunological protection. Blood cells have high turnover, therefore, this system must be dynamically controlled and must have broad regeneration potential. In this review, we summarize how this complex system is regulated by the heme oxygenase-1 (HO-1)-an enzyme, which degrades heme to biliverdin, ferrous ion and carbon monoxide. First, we discuss how HO-1 influences hematopoietic stem cells (HSC) self-renewal, aging and differentiation. We also describe a critical role of HO-1 in endothelial cells and mesenchymal stromal cells that constitute the specialized bone marrow niche of HSC. We further discuss the molecular and cellular mechanisms by which HO-1 modulates innate and adaptive immune responses. Finally, we highlight how modulation of HO-1 activity regulates the mobilization of bone marrow hematopoietic cells to peripheral blood. We critically discuss the issue of metalloporphyrins, commonly used pharmacological modulators of HO-1 activity, and raise the issue of their important HO-1-independent activities.


Assuntos
Envelhecimento , Diferenciação Celular , Autorrenovação Celular , Microambiente Celular , Hematopoese , Heme Oxigenase-1/metabolismo , Células-Tronco Mesenquimais/citologia , Animais , Humanos , Células-Tronco Mesenquimais/enzimologia
4.
Antioxidants (Basel) ; 10(1)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445471

RESUMO

G-quadruplexes (G4) are stacked nucleic acid structures that are stabilized by heme. In cells, they affect DNA replication and gene transcription. They are unwound by several helicases but the composition of the repair complex and its heme sensitivity are unclear. We found that the accumulation of G-quadruplexes is affected by heme oxygenase-1 (Hmox1) expression, but in a cell-type-specific manner: hematopoietic stem cells (HSCs) from Hmox1-/- mice have upregulated expressions of G4-unwinding helicases (e.g., Brip1, Pif1) and show weaker staining for G-quadruplexes, whereas Hmox1-deficient murine induced pluripotent stem cells (iPSCs), despite the upregulation of helicases, have more G-quadruplexes, especially after exposure to exogenous heme. Using iPSCs expressing only nuclear or only cytoplasmic forms of Hmox1, we found that nuclear localization promotes G4 removal. We demonstrated that the proximity ligation assay (PLA) can detect cellular co-localization of G-quadruplexes with helicases, as well as with HMOX1, suggesting the potential role of HMOX1 in G4 modifications. However, this colocalization does not mean a direct interaction was detectable using the immunoprecipitation assay. Therefore, we concluded that HMOX1 influences G4 accumulation, but rather as one of the proteins regulating the heme availability, not as a rate-limiting factor. It is noteworthy that cellular G4-protein colocalizations can be quantitatively analyzed using PLA, even in rare cells.

5.
Antioxidants (Basel) ; 9(12)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287312

RESUMO

OBJECTIVE: Heme oxygenase-1 (HO-1) is a cytoprotective, proangiogenic and anti-inflammatory enzyme that is often upregulated in tumors. Overexpression of HO-1 in melanoma cells leads to enhanced tumor growth, augmented angiogenesis and resistance to anticancer treatment. The effect of HO-1 in host cells on tumor development is, however, hardly known. METHODS AND RESULTS: To clarify the effect of HO-1 expression in host cells on melanoma progression, C57BL/6xFvB mice of different HO-1 genotypes, HO-1+/+, HO-1+/-, and HO-1-/-, were injected with the syngeneic wild-type murine melanoma B16(F10) cell line. Lack of HO-1 in host cells did not significantly influence the host survival. Nevertheless, in comparison to the wild-type counterparts, the HO-1+/- and HO-1-/- males formed bigger tumors, and more numerous lung nodules; in addition, more of them had liver and spleen micrometastases. Females of all genotypes developed at least 10 times smaller tumors than males. Of importance, the growth of primary and secondary tumors was completely blocked in HO-1+/+ females. This was related to the increased infiltration of leukocytes (mainly lymphocytes T) in primary tumors. CONCLUSIONS: Although HO-1 overexpression in melanoma cells can enhance tumor progression in mice, its presence in host cells, including immune cells, can reduce growth and metastasis of melanoma.

6.
Nat Commun ; 11(1): 3798, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32732867

RESUMO

Blood vascular endothelial cells (BECs) control the immune response by regulating blood flow and immune cell recruitment in lymphoid tissues. However, the diversity of BEC and their origins during immune angiogenesis remain unclear. Here we profile transcriptomes of BEC from peripheral lymph nodes and map phenotypes to the vasculature. We identify multiple subsets, including a medullary venous population whose gene signature predicts a selective role in myeloid cell (vs lymphocyte) recruitment to the medulla, confirmed by videomicroscopy. We define five capillary subsets, including a capillary resident precursor (CRP) that displays stem cell and migratory gene signatures, and contributes to homeostatic BEC turnover and to neogenesis of high endothelium after immunization. Cell alignments show retention of developmental programs along trajectories from CRP to mature venous and arterial populations. Our single cell atlas provides a molecular roadmap of the lymph node blood vasculature and defines subset specialization for leukocyte recruitment and vascular homeostasis.


Assuntos
Células Endoteliais/citologia , Endotélio Vascular/citologia , Linfonodos/irrigação sanguínea , Linfócitos/imunologia , Células Mieloides/imunologia , Animais , Sequência de Bases , Movimento Celular/imunologia , Feminino , Perfilação da Expressão Gênica , Homeostase/imunologia , Inflamação/imunologia , Tecido Linfoide/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Análise de Sequência de RNA , Análise de Célula Única , Transcriptoma/genética
7.
iScience ; 23(2): 100842, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32058956

RESUMO

High-dimensional single cell profiling coupled with computational modeling is emerging as a powerful tool to elucidate developmental programs directing cell lineages. We introduce tSpace, an algorithm based on the concept of "trajectory space", in which cells are defined by their distance along nearest neighbor pathways to every other cell in a population. Graphical mapping of cells in trajectory space allows unsupervised reconstruction and exploration of complex developmental sequences. Applied to flow and mass cytometry data, the method faithfully reconstructs thymic T cell development and reveals development and trafficking regulation of tonsillar B cells. Applied to the single cell transcriptome of mouse intestine and C. elegans, the method recapitulates development from intestinal stem cells to specialized epithelial phenotypes more faithfully than existing algorithms and orders C. elegans cells concordantly to the associated embryonic time. tSpace profiling of complex populations is well suited for hypothesis generation in developing cell systems.

8.
EMBO Rep ; 21(2): e47895, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31885181

RESUMO

While intrinsic changes in aging hematopoietic stem cells (HSCs) are well characterized, it remains unclear how extrinsic factors affect HSC aging. Here, we demonstrate that cells in the niche-endothelial cells (ECs) and CXCL12-abundant reticular cells (CARs)-highly express the heme-degrading enzyme, heme oxygenase 1 (HO-1), but then decrease its expression with age. HO-1-deficient animals (HO-1-/- ) have altered numbers of ECs and CARs that produce less hematopoietic factors. HSCs co-cultured in vitro with HO-1-/- mesenchymal stromal cells expand, but have altered kinetic of growth and differentiation of derived colonies. HSCs from young HO-1-/- animals have reduced quiescence and regenerative potential. Young HO-1-/- HSCs exhibit features of premature exhaustion on the transcriptional and functional level. HO-1+/+ HSCs transplanted into HO-1-/- recipients exhaust their regenerative potential early and do not reconstitute secondary recipients. In turn, transplantation of HO-1-/- HSCs to the HO-1+/+ recipients recovers the regenerative potential of HO-1-/- HSCs and reverses their transcriptional alterations. Thus, HSC-extrinsic activity of HO-1 prevents HSCs from premature exhaustion and may restore the function of aged HSCs.


Assuntos
Heme Oxigenase-1 , Células-Tronco Mesenquimais , Animais , Diferenciação Celular , Células Endoteliais , Células-Tronco Hematopoéticas , Heme Oxigenase-1/genética
9.
EMBO Mol Med ; 11(12): e09571, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31709729

RESUMO

Granulocyte colony-stimulating factor (G-CSF) is used in clinical practice to mobilize cells from the bone marrow to the blood; however, it is not always effective. We show that cobalt protoporphyrin IX (CoPP) increases plasma concentrations of G-CSF, IL-6, and MCP-1 in mice, triggering the mobilization of granulocytes and hematopoietic stem and progenitor cells (HSPC). Compared with recombinant G-CSF, CoPP mobilizes higher number of HSPC and mature granulocytes. In contrast to G-CSF, CoPP does not increase the number of circulating T cells. Transplantation of CoPP-mobilized peripheral blood mononuclear cells (PBMC) results in higher chimerism and faster hematopoietic reconstitution than transplantation of PBMC mobilized by G-CSF. Although CoPP is used to activate Nrf2/HO-1 axis, the observed effects are Nrf2/HO-1 independent. Concluding, CoPP increases expression of mobilization-related cytokines and has superior mobilizing efficiency compared with recombinant G-CSF. This observation could lead to the development of new strategies for the treatment of neutropenia and HSPC transplantation.


Assuntos
Fator Estimulador de Colônias de Granulócitos/metabolismo , Granulócitos/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Heme Oxigenase-1/deficiência , Protoporfirinas/farmacologia , Animais , Feminino , Mobilização de Células-Tronco Hematopoéticas , Heme Oxigenase-1/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
10.
IUBMB Life ; 70(2): 129-142, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29316264

RESUMO

Cellular stress can influence efficiency of iPSCs generation and their differentiation. However, the role of intracellular cytoprotective factors in these processes is still not well known. Therefore, we investigated the effect of HO-1 (Hmox1) or Nrf2 (Nfe2l2), two major cytoprotective genes. Hmox1-/- fibroblasts demonstrated decreased reprogramming efficiency in comparison to Hmox1+/+ cells. Reversely, pharmacological enhancement of HO-1 resulted in higher number of iPSCs colonies. Importantly, elevated level of both p53 and p53-regulated miR-34a and 14-3-3σ was observed in HO-1-deficient fibroblasts whereas downregulation of p53 in these cells markedly increased their reprogramming efficiency. In human fibroblasts HO-1 silencing also induced p53 expression and affected reprogramming outcome. Hmox1+/+ and Hmox1-/- iPSCs similarly differentiated in vitro to cells originating from three germ layers, however, lower number of contracting cells was observed during this process in HO-1-deficient cells indicating attenuated cardiac differentiation. Importantly, silencing of Hmox1 in murine ESC using CRISPR/Cas-9 editing also impaired their spontaneous cardiac differentiation. Decreased reprogramming efficiency was also observed in Nrf2-lacking fibroblasts. Reversely, sulforaphane, a Nrf2 activator, increased the number of iPSCs colonies. However, both Nfe2l2+/+ and Nfe2l2-/- iPSCs showed similar pluripotency and differentiation capacity. These results indicate that regulation of HO-1 expression can further optimize generation and cardiac differentiation of iPSCs. © 2018 IUBMB Life, 70(2):129-142, 2018.


Assuntos
Diferenciação Celular/fisiologia , Técnicas de Reprogramação Celular/métodos , Heme Oxigenase-1/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Proteínas de Membrana/metabolismo , Animais , Ciclo Celular/fisiologia , Fibroblastos , Heme Oxigenase-1/genética , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
11.
Antioxid Redox Signal ; 29(2): 111-127, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29065700

RESUMO

AIMS: Mesenchymal stromal cells (MSCs) are heterogeneous cells from adult tissues that are able to differentiate in vitro into adipocytes, osteoblasts, or chondrocytes. Such cells are widely studied in regenerative medicine. However, the success of cellular therapy depends on the cell survival. Heme oxygenase-1 (HO-1, encoded by the Hmox1 gene), an enzyme converting heme to biliverdin, carbon monoxide, and Fe2+, is cytoprotective and can affect stem cell performance. Therefore, our study aimed at assessing whether Hmox1 is critical for survival and functions of murine bone marrow MSCs. RESULTS: Both MSC Hmox1+/+ and Hmox1-/- showed similar phenotype, differentiation capacities, and production of cytokines or growth factors. Hmox1+/+ and Hmox1-/- cells showed similar survival in response to 50 µmol/L hemin even in increased glucose concentration, conditions that were unfavorable for Hmox1-/- bone marrow-derived proangiogenic cells (BDMC). Hmox1+/+ MSCs but not fibroblasts retained low ROS levels even after prolonged incubation with 50 µmol/L hemin, although both cell types have a comparable Hmox1 expression and similarly increase its levels in response to hemin. MSCs Hmox1-/- treated with hemin efficiently induced expression of a vast panel of antioxidant genes, especially enzymes of the glutathione pathway. Innovation and Conclusion: Hmox1 overexpression is a popular strategy to enhance viability and performance of MSCs after the transplantation. However, murine MSCs Hmox1-/- do not differ from wild-type MSCs in phenotype and functions. MSC Hmox1-/- show better resistance to hemin than fibroblasts and BDMCs and rapidly react to the stress by upregulation of quintessential genes in antioxidant response. Antioxid. Redox Signal. 00, 000-000.


Assuntos
Heme Oxigenase-1/genética , Proteínas de Membrana/genética , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Estresse Oxidativo , Animais , Antioxidantes/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/enzimologia , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Diferenciação Celular , Sobrevivência Celular/efeitos dos fármacos , Citocinas/biossíntese , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Expressão Gênica , Heme Oxigenase (Desciclizante)/metabolismo , Hemina/toxicidade , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/toxicidade , Células-Tronco Mesenquimais/enzimologia , Células-Tronco Mesenquimais/imunologia , Camundongos , Camundongos Knockout , Fenótipo
12.
Immunobiology ; 222(6): 846-857, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28576353

RESUMO

Heme oxygenase-1 (HO-1) is stress-inducible, cytoprotective enzyme degrading heme to carbon monoxide (CO), biliverdin and Fe2+. We showed that HO-1 knock-out mice (HO-1-/-) have a twofold higher level of granulocytes than wild type (WT) mice, despite decreased concentration of granulocyte colony-stimulating factor (G-CSF) in the blood and reduced surface expression of G-CSF receptor on the hematopoietic precursors. This suggests the effect of HO-1 on granulopoiesis. Here we aimed to determine the stage of granulopoiesis regulated by HO-1. The earliest stages of hematopoiesis were not biased toward myeloid differentiation in HO-1-/- mice. Within committed granulocytic compartment, in WT mice, HO-1 was up-regulated starting from myelocyte stage. This was concomitant with up-regulation of miR-155, which targets Bach1, the HO-1 repressor. In HO-1-/- mice granulopoiesis was accelerated between myelocyte and metamyelocyte stage. There was a higher fraction of proliferating myelocytes, with increased nuclear expression of pro-proliferative C/EBPß (CCAAT/enhancer binding protein beta) protein, especially its active LAP (liver-enriched activator proteins) isoform. Also our mathematical model confirmed shortening the myelocyte cyclic-time and prolonged mitotic expansion in absence of HO-1. It seems that changes in C/EBPß expression and activity in HO-1-/- myelocytes can be associated with reduced level of its direct repressor miR-155 or with decreased concentration of CO, known to reduce nuclear translocation of C/EBPs. Mature HO-1-/- granulocytes were functionally competent as determined by oxidative burst capacity. In conclusion, HO-1 influences granulopoiesis through regulation of myelocyte proliferation. It is accompanied by changes in expression of transcriptionally active C/EBPß protein. As HO-1 expression vary in human and is up-regulated in response to chemotherapy, it can potentially influence chemotherapy-induced neutropenia.


Assuntos
Células Precursoras de Granulócitos/fisiologia , Granulócitos/fisiologia , Heme Oxigenase-1/metabolismo , Proteínas de Membrana/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Fator Estimulador de Colônias de Granulócitos/metabolismo , Hematopoese , Heme Oxigenase-1/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Explosão Respiratória
13.
Immunobiology ; 222(3): 506-517, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27817989

RESUMO

Heme oxygenase-1 (HO-1) is stress-inducible, cytoprotective enzyme degrading heme to carbon monoxide (CO), biliverdin and Fe2+. We showed that HO-1 knock-out mice (HO-1-/-) have a twofold higher level of granulocytes than wild type (WT) mice, despite decreased concentration of granulocyte colony-stimulating factor (G-CSF) in the blood and reduced surface expression of G-CSF receptor on the hematopoietic precursors. This suggests the effect of HO-1 on granulopoiesis. Here we aimed to determine the stage of granulopoiesis regulated by HO-1. The earliest stages of hematopoiesis were not biased toward myeloid differentiation in HO-1-/- mice. Within committed granulocytic compartment, in WT mice, HO-1 was up-regulated starting from myelocyte stage. This was concomitant with up-regulation of miR-155, which targets Bach1, the HO-1 repressor. In HO-1-/- mice granulopoiesis was accelerated between myelocyte and metamyelocyte stage. There was a higher fraction of proliferating myelocytes, with increased nuclear expression of pro-proliferative C/EBPß (CCAAT/enhancer binding protein beta) protein, especially its active LAP (liver-enriched activator proteins) isoform. Also our mathematical model confirmed shortening the myelocyte cyclic-time and prolonged mitotic expansion in absence of HO-1. It seems that changes in C/EBPß expression and activity in HO-1-/- myelocytes can be associated with reduced level of its direct repressor miR-155 or with decreased concentration of CO, known to reduce nuclear translocation of C/EBPs. Mature HO-1-/- granulocytes were functionally competent as determined by oxidative burst capacity. In conclusion, HO-1 influences granulopoiesis through regulation of myelocyte proliferation. It is accompanied by changes in expression of transcriptionally active C/EBPß protein. As HO-1 expression vary in human and is up-regulated in response to chemotherapy, it can potentially influence chemotherapy-induced neutropenia.


Assuntos
Diferenciação Celular/genética , Células Precursoras de Granulócitos/citologia , Células Precursoras de Granulócitos/metabolismo , Granulócitos/citologia , Granulócitos/metabolismo , Heme Oxigenase-1/genética , Mielopoese/genética , Animais , Biomarcadores , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proliferação de Células , Fator Estimulador de Colônias de Granulócitos/sangue , Fator Estimulador de Colônias de Granulócitos/metabolismo , Heme Oxigenase-1/metabolismo , Imunofenotipagem , Contagem de Leucócitos , Camundongos , Camundongos Knockout , Espécies Reativas de Oxigênio/metabolismo
14.
Cancer Res ; 76(19): 5707-5718, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27488535

RESUMO

Rhabdomyosarcoma (RMS) is an aggressive soft tissue cancer characterized by disturbed myogenic differentiation. Here we report a role for the oxidative stress response factor HO-1 in progression of RMS. We found that HO-1 was elevated and its effector target miR-206 decreased in RMS cell lines and clinical primary tumors of the more aggressive alveolar phenotype (aRMS). In embryonal RMS (eRMS), HO-1 expression was induced by Pax3/7-FoxO1, an aRMS hallmark oncogene, followed by a drop in miR-206 levels. Inhibition of HO-1 by tin protoporphyrin (SnPP) or siRNA downregulated Pax3/7-FoxO1 target genes and induced a myogenic program in RMS. These effects were not mediated by altered myoD expression; instead, cells with elevated HO-1 produced less reactive oxygen species, resulting in nuclear localization of HDAC4 and miR-206 repression. HO-1 inhibition by SnPP reduced growth and vascularization of RMS tumors in vivo accompanied by induction of miR-206. Effects of SnPP on miR-206 expression and RMS tumor growth were mimicked by pharmacologic inhibition of HDAC. Thus, HO-1 inhibition activates an miR-206-dependent myogenic program in RMS, offering a novel therapeutic strategy for treatment of this malignancy. Cancer Res; 76(19); 5707-18. ©2016 AACR.


Assuntos
Heme Oxigenase-1/fisiologia , Histona Desacetilases/fisiologia , MicroRNAs/fisiologia , Estresse Oxidativo , Proteínas Repressoras/fisiologia , Rabdomiossarcoma/metabolismo , Animais , Linhagem Celular Tumoral , Proteína Forkhead Box O1/genética , Fusão Gênica , Humanos , Metaloporfirinas/farmacologia , Camundongos , Fator de Transcrição PAX3/genética , Protoporfirinas/farmacologia
16.
Tumour Biol ; 37(2): 2481-96, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26385771

RESUMO

Subcutaneous injection of the tumor cell suspension is a simple and commonly used tool for studying tumor development in vivo. However, subcutaneous models poorly resemble tumor complexity due to the fast growth not reflecting the natural course. Here, we describe an application of the new spheroid-plug model to combine the simplicity of subcutaneous injection with improved resemblance to natural tumor progression. Spheroid-plug model relies on in vitro formation of tumor spheroids, followed by injection of single tumor spheroid subcutaneously in Matrigel matrix. In spheroid-plug model, tumors grow slower in comparison to tumors formed by injection of cell suspension as assessed by 3D ultrasonography (USG) and in vivo bioluminescence measurements. The slower tumor growth rate in spheroid-plug model is accompanied by reduced necrosis. The spheroid-plug model ensures increased and more stable vascularization of tumor than classical subcutaneous tumor model as demonstrated by 3D USG Power Doppler examination. Flow cytometry analysis showed that tumors formed from spheroids have enhanced infiltration of endothelial cells as well as hematopoietic and progenitor cells with stem cell phenotype (c-Kit(+) and Sca-1(+)). They also contain more tumor cells expressing cancer stem cell marker CXCR4. Here, we show that spheroid-plug model allows investigating efficiency of anticancer drugs. Treatment of spheroid-plug tumors with known antiangiogenic agent axitinib decreased their size and viability. The antiangiogenic activity of axitinib was higher in spheroid-plug model than in classical model. Our results indicate that spheroid-plug model imitates natural tumor growth and can become a valuable tool for cancer research.


Assuntos
Carcinogênese/patologia , Neovascularização Patológica/patologia , Esferoides Celulares/patologia , Animais , Antineoplásicos/farmacologia , Axitinibe , Biomarcadores Tumorais/metabolismo , Carcinogênese/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colágeno/metabolismo , Combinação de Medicamentos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Imidazóis/farmacologia , Indazóis/farmacologia , Injeções Subcutâneas/métodos , Laminina/metabolismo , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neovascularização Patológica/metabolismo , Proteoglicanas/metabolismo , Receptores CXCR4/metabolismo , Esferoides Celulares/metabolismo , Células Tumorais Cultivadas
17.
Acta Biochim Pol ; 62(3): 329-37, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26200199

RESUMO

Stem cells are self-renewing cells that can differentiate into specialized cell type(s). Pluripotent stem cells, i.e. embryonic stem cells (ESC) or induced pluripotent stem cells (iPSC) differentiate into cells of all three embryonic lineages. Multipotent stem cells, like hematopoietic stem cells (HSC), can develop into multiple specialized cells in a specific tissue. Unipotent cells differentiate only into one cell type, like e.g. satellite cells of skeletal muscle. There are many examples of successful clinical applications of stem cells. Over million patients worldwide have benefited from bone marrow transplantations performed for treatment of leukemias, anemias or immunodeficiencies. Skin stem cells are used to heal severe burns, while limbal stem cells can regenerate the damaged cornea. Pluripotent stem cells, especially the patient-specific iPSC, have a tremendous therapeutic potential, but their clinical application will require overcoming numerous drawbacks. Therefore, the use of adult stem cells, which are multipotent or unipotent, can be at present a more achievable strategy. Noteworthy, some studies ascribed particular adult stem cells as pluripotent. However, despite efforts, the postulated pluripotency of such events like "spore-like cells", "very small embryonic-like stem cells" or "multipotent adult progenitor cells" have not been confirmed in stringent independent studies. Also plasticity of the bone marrow-derived cells which were suggested to differentiate e.g. into cardiomyocytes, has not been positively verified, and their therapeutic effect, if observed, results rather from the paracrine activity. Here we discuss the examples of recent studies on adult stem cells in the light of current understanding of stem cell biology.


Assuntos
Células-Tronco Adultas/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Medicina Regenerativa/tendências , Transplante de Células-Tronco , Células-Tronco/citologia , Adulto , Animais , Linhagem da Célula , Células-Tronco Embrionárias/citologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Humanos , Células-Tronco Pluripotentes/citologia
18.
Mediators Inflamm ; 2015: 762419, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25834307

RESUMO

C57BL/6 is the most often used laboratory mouse strain. However, sometimes it is beneficial to cross the transgenic mice on the C57BL/6 background to the other strain, such as FVB. Although this is a common strategy, the influence of crossing these different strains on homeostatic expression of cytokines is not known. Here we have investigated the differences in the expression of selected cytokines between C57BL/6J and C57BL/6JxFVB mice in serum and skeletal muscle. We have found that only few cytokines were altered by crossing of the strains. Concentrations of IL5, IL7, LIF, MIP-2, and IP-10 were higher in serum of C57BL/6J mice than in C57BL/6JxFVB mice, whereas concentration of G-CSF was lower in C57BL/6J. In the skeletal muscle only the concentration of VEGF was higher in C57BL/6J mice than in C57BL/6JxFVB mice. Concluding, the differences in cytokine expression upon crossing C57BL/6 and FVB strain in basal conditions are not profound.


Assuntos
Citocinas/sangue , Animais , Cruzamentos Genéticos , Feminino , Heme Oxigenase-1/fisiologia , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Especificidade da Espécie
19.
IUBMB Life ; 67(3): 145-59, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25899846

RESUMO

Blood vessel formation is a fundamental process for the development of organism and tissue regeneration. Of importance, angiogenesis occurring during postnatal development is usually connected with inflammation. Here, we review how molecular and cellular mechanisms underlying inflammatory reactions regulate angiogenesis. Inflamed tissues are characterized by hypoxic conditions and immune cell infiltration. In this review, we describe an interplay of hypoxia-inducible factors (HIFs), HIF1 and HIF2, as well as NF-κB and nitric oxide in the regulation of angiogenesis. The mobilization of macrophages and the differential role of M1 and M2 macrophage subsets in angiogenesis are also discussed. Next, we present the current knowledge about microRNA regulation of inflammation in the context of new blood vessel formation. Finally, we describe how the mechanisms involved in inflammation influence tumor angiogenesis. We underlay and discuss the role of NF-E2-related factor 2/heme oxygenase-1 pathway as crucial in the regulation of inflammation-induced angiogenesis.


Assuntos
Inflamação/fisiopatologia , Neovascularização Patológica/etiologia , Animais , Hipóxia Celular/fisiologia , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Regulação da Expressão Gênica , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamação/genética , Isquemia/complicações , Isquemia/fisiopatologia , Macrófagos/metabolismo , Macrófagos/patologia , MicroRNAs , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Neoplasias/irrigação sanguínea , Neoplasias/fisiopatologia , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Transdução de Sinais
20.
PLoS One ; 8(5): e63329, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23696815

RESUMO

Murine very small embryonic-like (VSEL) cells, defined by the Lin(-)Sca-1(+)CD45(-) phenotype and small size, were described as pluripotent cells and proposed to be the most primitive hematopoietic precursors in adult bone marrow. Although their isolation and potential application rely entirely on flow cytometry, the immunophenotype of VSELs has not been extensively characterized. Our aim was to analyze the possible heterogeneity of Lin(-)Sca(+)CD45(-) population and investigate the extent to which VSELs characteristics may overlap with that of hematopoietic stem cells (HSCs) or endothelial progenitor cells (EPCs). The study evidenced that murine Lin(-)Sca-1(+)CD45(-) population was heterogeneous in terms of c-Kit and KDR expression. Accordingly, the c-Kit(+)KDR(-), c-Kit(-)KDR(+), and c-Kit(-)KDR(-) subpopulations could be distinguished, while c-Kit(+)KDR(+) events were very rare. The c-Kit(+)KDR(-) subset contained almost solely small cells, meeting the size criterion of VSELs, in contrast to relatively bigger c-Kit(-)KDR(+) cells. The c-Kit(-)KDR(-)FSC(low) subset was highly enriched in Annexin V-positive, apoptotic cells, hence omitted from further analysis. Importantly, using qRT-PCR, we evidenced lack of Oct-4A and Oct-4B mRNA expression either in whole adult murine bone marrow or in the sorted of Lin(-)Sca-1(+)CD45(-)FSC(low) population, even by single-cell qRT-PCR. We also found that the Lin(-)Sca-1(+)CD45(-)c-Kit(+) subset did not exhibit hematopoietic potential in a single cell-derived colony in vitro assay, although it comprised the Sca-1(+)c-Kit(+)Lin(-) (SKL) CD34(-)CD45(-)CD105(+) cells, expressing particular HSC markers. Co-culture of Lin(-)Sca-1(+)CD45(-)FSC(low) with OP9 cells did not induce hematopoietic potential. Further investigation revealed that SKL CD45(-)CD105(+) subset consisted of early apoptotic cells with fragmented chromatin, and could be contaminated with nuclei expelled from erythroblasts. Concluding, murine bone marrow Lin(-)Sca-1(+)CD45(-)FSC(low) cells are heterogeneous population, which do not express the pluripotency marker Oct-4A. Despite expression of some hematopoietic markers by a Lin(-)Sca-1(+)CD45(-)c-Kit(+)KDR(-) subset of VSELs, they do not display hematopoietic potential in a clonogenic assay and are enriched in early apoptotic cells.


Assuntos
Células da Medula Óssea/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Animais , Antígenos Ly/metabolismo , Diferenciação Celular , Núcleo Celular/metabolismo , Sobrevivência Celular , Células Cultivadas , Técnicas de Cocultura , Citometria de Fluxo , Expressão Gênica , Antígenos Comuns de Leucócito/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fator 3 de Transcrição de Octâmero/genética , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...