Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 28(1): 36-45, 2001 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11213920

RESUMO

Multi-instrument activity estimation and decay correction techniques were developed for radionuclide mixtures, motivated by the desire for accurate quantitation of Tc-94m positron emission tomography (PET) studies. Tc-94m and byproduct Tc isotopes were produced by proton irradiation of enriched Mo-94 and natural Mo targets. Mixture activities at the end of bombardment were determined with a calibrated high purity germanium detector. The activity fractions of the greatest mixture impurities relative to 100% for Tc-94m averaged 10.0% (Tc-94g) and 3.3% (Tc-93) for enriched targets and 10.1% (Tc-94g), 11.0% (Tc-95), 255.8% (Tc-96m), and 7.2% (Tc-99m) for natural targets. These radioisotopes have different half-lives (e.g., 52.5 min for Tc-94m, 293 min for Tc-94g), positron branching ratios (e.g., 0.72 for Tc-94m, 0.11 for Tc-94g) and gamma ray emissions for themselves and their short-lived, excited Mo daughters. This complicates estimation of injected activity with a dose calibrator, in vivo activity with PET and blood sample activity with a gamma counter. Decay correction using only the Tc-94m half-life overestimates activity and is inadequate. For this reason analytic formulas for activity estimation and decay correction of radionuclide mixtures were developed. Isotope-dependent sensitivity factors for a PET scanner, dose calibrator, and gamma counter were determined using theoretical sensitivity models and fits of experimental decay curves to sums of exponentials with fixed decay rates. For up to 8 h after the end of bombardment with activity from enriched and natural Mo targets, decay-corrected activities were within 3% of the mean for three PET studies of a uniform cylinder, within 3% of the mean for six dose calibrator decay studies, and within 6% of the mean for four gamma counter decay studies. Activity estimation and decay correction for Tc-94m mixtures enable routine use of Tc-94m in quantitative PET, as illustrated by application to a canine Tc-94m sestamibi study.


Assuntos
Tecnécio , Tomografia Computadorizada de Emissão/instrumentação , Animais , Fenômenos Biofísicos , Biofísica , Cães , Coração/diagnóstico por imagem , Humanos , Imagens de Fantasmas , Doses de Radiação , Compostos Radiofarmacêuticos , Espalhamento de Radiação , Tecnécio Tc 99m Sestamibi , Tomografia Computadorizada de Emissão/métodos , Tomografia Computadorizada de Emissão/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...