Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Sci ; 4(2): 240-72, 2014 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-24961760

RESUMO

Hypoxia-ischemia (HI; reduction in blood/oxygen supply) is common in infants with serious birth complications, such as prolonged labor and cord prolapse, as well as in infants born prematurely (<37 weeks gestational age; GA). Most often, HI can lead to brain injury in the form of cortical and subcortical damage, as well as later cognitive/behavioral deficits. A common domain of impairment is working memory, which can be associated with heightened incidence of developmental disorders. To further characterize these clinical issues, the current investigation describes data from a rodent model of HI induced on postnatal (P)7, an age comparable to a term (GA 36-38) human. Specifically, we sought to assess working memory using an eight-arm radial water maze paradigm. Study 1 used a modified version of the paradigm, which requires a step-wise change in spatial memory via progressively more difficult tasks, as well as multiple daily trials for extra learning opportunity. Results were surprising and revealed a small HI deficit only for the final and most difficult condition, when a delay before test trial was introduced. Study 2 again used the modified radial arm maze, but presented the most difficult condition from the start, and only one daily test trial. Here, results were expected and revealed a robust and consistent HI deficit across all weeks. Combined results indicate that male HI rats can learn a difficult spatial working memory task if it is presented in a graded multi-trial format, but performance is poor and does not appear to remediate if the task is presented with high initial memory demand. Male HI rats in both studies displayed impulsive characteristics throughout testing evidenced as reduced choice latencies despite more errors. This aspect of behavioral results is consistent with impulsiveness as a core symptom of ADHD-a diagnosis common in children with HI insult. Overall findings suggest that task specific behavioral modifications are crucial to accommodating memory deficits in children suffering from cognitive impairments following neonatal HI.

2.
Dev Neurosci ; 35(1): 50-68, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23594585

RESUMO

The current study investigated the behavioral and neuroanatomical effects of embryonic knockdown of the candidate dyslexia susceptibility gene (CDSG) homolog Dyx1c1 through RNA interference (RNAi) in rats. Specifically, we examined long-term effects on visual attention abilities in male rats, in addition to assessing rapid and complex auditory processing abilities in male and, for the first time, female rats. Our results replicated prior evidence of complex acoustic processing deficits in Dyx1c1 male rats and revealed new evidence of comparable deficits in Dyx1c1 female rats. Moreover, we found new evidence that knocking down Dyx1c1 produced orthogonal impairments in visual attention in the male subgroup. Stereological analyses of male brains from prior RNAi studies revealed that, despite consistent visible evidence of disruptions of neuronal migration (i.e., heterotopia), knockdown of Dyx1c1 did not significantly alter the cortical volume, hippocampal volume, or midsagittal area of the corpus callosum (measured in a separate cohort of like-treated Dyx1c1 male rats). Dyx1c1 transfection did, however, lead to significant changes in medial geniculate nucleus (MGN) anatomy, with a significant shift to smaller MGN neurons in Dyx1c1-transfected animals. Combined results provide important information about the impact of Dyx1c1 on behavioral functions that parallel domains known to be affected in language-impaired populations as well as information about widespread changes to the brain following early disruption of this CDSG.


Assuntos
Atenção/fisiologia , Percepção Auditiva/fisiologia , Proteínas de Transporte/fisiologia , Córtex Cerebral/anormalidades , Corpos Geniculados/anormalidades , Percepção Visual/fisiologia , Agenesia do Corpo Caloso/patologia , Animais , Proteínas de Transporte/genética , Feminino , Técnicas de Silenciamento de Genes , Hipocampo/anormalidades , Masculino , Malformações do Desenvolvimento Cortical do Grupo II/patologia , Aprendizagem em Labirinto , Interferência de RNA , Ratos , Ratos Wistar
3.
Int J Dev Neurosci ; 31(2): 116-22, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23220223

RESUMO

Developmental dyslexia is a disorder characterized by a specific deficit in reading despite adequate overall intelligence and educational resources. The neurological substrate underlying these significant behavioral impairments is not known. Studies of post mortem brain tissue from male and female dyslexic individuals revealed focal disruptions of neuronal migration concentrated in the left hemisphere, along with aberrant symmetry of the right and left the planum temporale, and changes in cell size distribution within the medial geniculate nucleus of the thalamus (Galaburda et al., 1985; Humphreys et al., 1990). More recent neuroimaging studies have identified several changes in the brains of dyslexic individuals, including regional changes in gray matter, changes in white matter, and changes in patterns of functional activation. In a further effort to elucidate the etiology of dyslexia, epidemiological and genetic studies have identified several candidate dyslexia susceptibility genes. Some recent work has investigated associations between some of these genetic variants and structural changes in the brain. Variants of one candidate dyslexia susceptibility gene, KIAA0319, have been linked to morphological changes in the cerebellum and functional activational changes in the superior temporal sulcus (Jamadar et al., 2011; Pinel et al., 2012). Animal models have been used to create a knockdown of Kiaa0319 (the rodent homolog of the human gene) via in utero RNA interference in order to study the gene's effects on brain development and behavior. Studies using this animal model have demonstrated that knocking down the gene leads to focal disruptions of neuronal migration in the form of ectopias and heterotopias, similar to those observed in the brains of human dyslexics. However, further changes to the structure of the brain have not been studied following this genetic disruption. The current study sought to determine the effects of embryonic Kiaa0319 knockdown on volume of the cortex and hippocampus, as well as midsagittal area of the corpus callosum in male rats. Results demonstrate that Kiaa0319 knockdown did not change the volume of the cortex or hippocampus, but did result in a significant reduction in the midsagittal area of the corpus callosum. Taken in the context of previous reports of behavioral deficits following Kiaa0319 knockdown (Szalkowski et al., 2012), and reports that reductions of corpus callosum size are related to processing deficits in humans (Paul, 2011), these results suggest that Kiaa0319 has a specific involvement in neural systems important for temporal processing.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Moléculas de Adesão Celular/genética , Tamanho do Órgão/genética , Animais , Moléculas de Adesão Celular/metabolismo , Técnicas de Silenciamento de Genes , Masculino , Ratos , Ratos Sprague-Dawley
4.
Behav Brain Res ; 235(2): 130-5, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22884828

RESUMO

Neocortical neuronal migration anomalies such as microgyria and heterotopia have been associated with developmental language learning impairments in humans, and rapid auditory processing deficits in rodent models. Similar processing impairments have been suggested to play a causal role in human language impairment. Recent data from our group has shown spatial working memory deficits associated with neocortical microgyria in rats. Similar deficits have also been identified in humans with language learning impairments. To further explore the extent of learning deficits associated with cortical neuronal migration anomalies, we evaluated the effects of neocortical microgyria and test order experience using spatial (Morris water maze) and non-spatial water maze learning paradigms. Two independent groups were employed (G1 or G2) incorporating both microgyria and sham conditions. G1 received spatial testing for five days followed by non-spatial testing, while the reverse order was followed for G2. Initial analysis, including both test groups and both maze conditions, revealed a main effect of treatment, with microgyric rats performing significantly worse than shams. Overall analysis also revealed a task by order interaction, indicating that each group performed better on the second task as compared to the first, regardless of which task was presented first. Independent analyses of each task revealed a significant effect of treatment (microgyria worse than sham) only for the spatial water maze condition. Results indicate that prior maze experience (regardless of task type) leads to better subsequent performance. Results suggest that behavioral abnormalities associated with microgyria extend beyond auditory and working memory deficits seen in previous studies, to include spatial but not non-spatial learning impairments and that non-specific test experience may improve behavioral performance.


Assuntos
Gliose/patologia , Deficiências da Aprendizagem/etiologia , Neocórtex/patologia , Percepção Espacial/fisiologia , Comportamento Espacial/fisiologia , Animais , Animais Recém-Nascidos , Encefalopatias/complicações , Encefalopatias/etiologia , Encefalopatias/patologia , Modelos Animais de Doenças , Reação de Fuga/fisiologia , Congelamento/efeitos adversos , Gliose/etiologia , Masculino , Aprendizagem em Labirinto , Ratos , Ratos Wistar
5.
Int J Dev Neurosci ; 30(4): 293-302, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22326444

RESUMO

Within the last decade several genes have been identified as candidate risk genes for developmental dyslexia. Recent research using animal models and embryonic RNA interference (RNAi) has shown that a subset of the candidate dyslexia risk genes--DYX1C1, ROBO1, DCDC2, KIAA0319--regulate critical parameters of neocortical development, such as neuronal migration. For example, embryonic disruption of the rodent homolog of DYX1C1 disrupts neuronal migration and produces deficits in rapid auditory processing (RAP) and working memory--phenotypes that have been reported to be associated with developmental dyslexia. In the current study we used a modified prepulse inhibition paradigm to assess acoustic discrimination abilities of male Wistar rats following in utero RNA interference targeting Kiaa0319. We also assessed spatial learning and working memory using a Morris water maze (MWM) and a radial arm water maze. We found that embryonic interference with this gene resulted in disrupted migration of neocortical neurons leading to formation of heterotopia in white matter, and to formation of hippocampal dysplasia in a subset of animals. These animals displayed deficits in processing complex acoustic stimuli, and those with hippocampal malformations exhibited impaired spatial learning abilities. No significant impairment in working memory was detected in the Kiaa0319 RNAi treated animals. Taken together, these results suggest that Kiaa0319 plays a role in neuronal migration during embryonic development, and that early interference with this gene results in an array of behavioral deficits including impairments in rapid auditory processing and simple spatial learning.


Assuntos
Dislexia , Transtornos Mentais/etiologia , Mutação/genética , Neocórtex/patologia , Proteínas do Tecido Nervoso/genética , Interferência de RNA/fisiologia , Estimulação Acústica , Análise de Variância , Animais , Aprendizagem da Esquiva/fisiologia , Proteínas do Citoesqueleto , Modelos Animais de Doenças , Dislexia/complicações , Dislexia/genética , Dislexia/patologia , Regulação da Expressão Gênica no Desenvolvimento , Hipocampo/patologia , Humanos , Masculino , Aprendizagem em Labirinto/fisiologia , Transtornos Mentais/genética , Neocórtex/metabolismo , Proteínas Nucleares/genética , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Ratos Wistar , Reflexo de Sobressalto/genética , Fatores de Tempo , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...