Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 20(26): 5237-5244, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38904184

RESUMO

We study the dynamics of dense three-dimensional systems of active particles for large persistence times τp at constant average self-propulsion force f. These systems are fluid counterparts of previously investigated extremely persistent systems, which in the large persistence time limit relax only on the time scale of τp. We find that many dynamic properties of the systems we study, such as the mean-squared velocity, the self-intermediate scattering function, and the shear-stress correlation function, become τp-independent in the large persistence time limit. In addition, the large τp limits of many dynamic properties, such as the mean-square velocity and the relaxation times of the scattering function, and the shear-stress correlation function, depend on f as power laws with non-trivial exponents. We conjecture that these systems constitute a new class of extremely persistent active systems.

2.
Nat Commun ; 15(1): 3107, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600083

RESUMO

The frequency scaling exponent of low-frequency excitations in microscopically small glasses, which do not allow for the existence of waves (phonons), has been in the focus of the recent literature. The density of states g(ω) of these modes obeys an ωs scaling, where the exponent s, ranging between 2 and 5, depends on the quenching protocol. The orgin of these findings remains controversal. Here we show, using heterogeneous-elasticity theory, that in a marginally-stable glass sample g(ω) follows a Debye-like scaling (s = 2), and the associated excitations (type-I) are of random-matrix type. Further, using a generalisation of the theory, we demonstrate that in more stable samples, other, (type-II) excitations prevail, which are non-irrotational oscillations, associated with local frozen-in stresses. The corresponding frequency scaling exponent s is governed by the statistics of small values of the stresses and, therefore, depends on the details of the interaction potential.

3.
Phys Rev E ; 107(6-1): 064608, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37464640

RESUMO

Elastic constants of zero-temperature amorphous solids are given as the difference between the Born term, which results from a hypothetical affine deformation of an amorphous solid, and a correction term, which originates from the fact that the deformation of an amorphous solid due to an applied stress is, at the microscopic level, nonaffine. Both terms are non-negative and thus it is a priori not obvious that the resulting elastic constants are non-negative. In particular, theories that approximate the correction term may spuriously predict negative elastic constants and thus an instability of an amorphous solid. Here we derive alternative expressions for elastic constants of zero-temperature amorphous solids that are explicitly non-negative. These expressions provide a useful blueprint for approximate theories for elastic constants and sound damping in zero-temperature amorphous solids.

4.
Phys Rev E ; 107(5-1): 054602, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37329101

RESUMO

The interest in active matter stimulates the need to generalize thermodynamic description and relations to active matter systems, which are intrinsically out of equilibrium. One important example is the Jarzynski relation, which links the exponential average of work done in an arbitrary process connecting two equilibrium states with the difference of the free energies of these states. Using a simple model system, a single thermal active Ornstein-Uhlenbeck particle in a harmonic potential, we show that if the standard stochastic thermodynamics definition of work is used, the Jarzynski relation is not generally valid for processes connecting stationary states of active matter systems.


Assuntos
Termodinâmica
5.
J Chem Phys ; 158(12): 126101, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37003739

RESUMO

Low-frequency vibrational harmonic modes of glasses are frequently used to rationalize their universal low-temperature properties. One well studied feature is the excess low-frequency density of states over the Debye model prediction. Here, we examine the system size dependence of the density of states for two-dimensional glasses. For systems of fewer than 100 particles, the density of states scales with the system size as if all the modes were plane-wave-like. However, for systems greater than 100 particles, we find a different system-size scaling of the cumulative density of states below the first transverse sound mode frequency, which can be derived from the assumption that these modes are quasi-localized. Moreover, for systems greater than 100 particles, we find that the cumulative density of states scales with the frequency as a power law with the exponent that leads to the exponent ß = 3.5 for the density of states. For systems whose sizes were investigated, we do not see a size-dependence of exponent ß.

6.
Phys Rev Lett ; 131(25): 257101, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38181341

RESUMO

Sampling the Boltzmann distribution using forces that violate detailed balance can be faster than with the equilibrium evolution, but the acceleration depends on the nature of the nonequilibrium drive and the physical situation. Here, we study the efficiency of forces transverse to energy gradients in dense liquids through a combination of techniques: Brownian dynamics simulations, exact infinite-dimensional calculation, and a mode-coupling approximation. We find that the sampling speedup varies nonmonotonically with temperature, and decreases as the system becomes more glassy. We characterize the interplay between the distance to equilibrium and the efficiency of transverse forces by means of odd transport coefficients.

7.
Phys Rev Lett ; 129(1): 019901, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35841585

RESUMO

This corrects the article DOI: 10.1103/PhysRevLett.127.248001.

8.
J Chem Phys ; 156(19): 191102, 2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35597637

RESUMO

We propose an alternative theory for the relaxation of density fluctuations in glass-forming fluids. We derive an equation of motion for the density correlation function that is local in time and is similar in spirit to the equation of motion for the average non-uniform density profile derived within the dynamic density functional theory. We identify the Franz-Parisi free energy functional as the non-equilibrium free energy for the evolution of the density correlation function. An appearance of a local minimum of this functional leads to a dynamic arrest. Thus, the ergodicity breaking transition predicted by our theory coincides with the dynamic transition of the static approach based on the same non-equilibrium free energy functional.

9.
J Chem Phys ; 156(14): 144502, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35428393

RESUMO

Sound attenuation in low-temperature amorphous solids originates from their disordered structure. However, its detailed mechanism is still being debated. Here, we analyze sound attenuation starting directly from the microscopic equations of motion. We derive an exact expression for the zero-temperature sound damping coefficient. We verify that the sound damping coefficients calculated from our expression agree very well with results from independent simulations of sound attenuation. Small wavevector analysis of our expression shows that sound attenuation is primarily determined by the non-affine displacements' contribution to the sound wave propagation coefficient coming from the frequency shell of the sound wave. Our expression involves only quantities that pertain to solids' static configurations. It can be used to evaluate the low-temperature sound damping coefficients without directly simulating sound attenuation.

10.
Phys Rev E ; 104(5-1): 054606, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34942693

RESUMO

In this paper we analytically derive the exact closed dynamical equations for a liquid with short-ranged interactions in large spatial dimensions using the same statistical mechanics tools employed to analyze Brownian motion. Our derivation greatly simplifies the original path-integral-based route to these equations and provides insight into the physical features associated with high-dimensional liquids and glass formation. Most importantly, our construction provides a route to the exact dynamical analysis of important related dynamical problems, as well as a means to devise cluster generalizations of the exact solution in infinite dimensions. This latter fact opens the door to the construction of increasingly accurate theories of vitrification in three-dimensional liquids.

11.
Phys Rev Lett ; 127(24): 248001, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34951818

RESUMO

Glasses possess more low-frequency vibrational modes than predicted by Debye theory. These excess modes are crucial for the understanding of the low temperature thermal and mechanical properties of glasses, which differ from those of crystalline solids. Recent simulational studies suggest that the density of the excess modes scales with their frequency ω as ω^{4} in two and higher dimensions. Here, we present extensive numerical studies of two-dimensional model glass formers over a large range of glass stabilities. We find that the density of the excess modes follows D_{exc}(ω)∼ω^{2} up to around the boson peak, regardless of the glass stability. The stability dependence of the overall scale of D_{exc}(ω) correlates with the stability dependence of low-frequency sound attenuation. However, we also find that, in small systems, where the first sound mode is pushed to higher frequencies, at frequencies below the first sound mode, there are excess modes with a system size independent density of states that scales as ω^{3}.

12.
J Chem Phys ; 154(18): 184901, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34241010

RESUMO

We derive a distribution function for the position of a tagged active particle in a slowly varying in space external potential, in a system of interacting active particles. The tagged particle distribution has the form of the Boltzmann distribution but with an effective temperature that replaces the temperature of the heat bath. We show that the effective temperature that enters the tagged particle distribution is the same as the effective temperature defined through the Einstein relation, i.e., it is equal to the ratio of the self-diffusion and tagged particle mobility coefficients. This result shows that this effective temperature, which is defined through a fluctuation-dissipation ratio, is relevant beyond the linear response regime. We verify our theoretical findings through computer simulations. Our theory fails when an additional large length scale appears in our active system. In the system we simulated, this length scale is associated with long-wavelength density fluctuations that emerge upon approaching motility-induced phase separation.

13.
J Phys Chem B ; 125(23): 6244-6254, 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34096720

RESUMO

The random Lorentz gas (RLG) is a minimal model of both percolation and glassiness, which leads to a paradox in the infinite-dimensional, d → ∞ limit: the localization transition is then expected to be continuous for the former and discontinuous for the latter. As a putative resolution, we have recently suggested that, as d increases, the behavior of the RLG converges to the glassy description and that percolation physics is recovered thanks to finite-d perturbative and nonperturbative (instantonic) corrections [Biroli et al. Phys. Rev. E 2021, 103, L030104]. Here, we expand on the d → ∞ physics by considering a simpler static solution as well as the dynamical solution of the RLG. Comparing the 1/d correction of this solution with numerical results reveals that even perturbative corrections fall out of reach of existing theoretical descriptions. Comparing the dynamical solution with the mode-coupling theory (MCT) results further reveals that, although key quantitative features of MCT are far off the mark, it does properly capture the discontinuous nature of the d → ∞ RLG. These insights help chart a path toward a complete description of finite-dimensional glasses.

14.
Phys Rev E ; 103(3): L030104, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33862778

RESUMO

The random Lorentz gas (RLG) is a minimal model of transport in heterogeneous media that exhibits a continuous localization transition controlled by void space percolation. The RLG also provides a toy model of particle caging, which is known to be relevant for describing the discontinuous dynamical transition of glasses. In order to clarify the interplay between the seemingly incompatible percolation and caging descriptions of the RLG, we consider its exact mean-field solution in the infinite-dimensional d→∞ limit and perform numerics in d=2...20. We find that for sufficiently high d the mean-field caging transition precedes and prevents the percolation transition, which only happens on timescales diverging with d. We further show that activated processes related to rare cage escapes destroy the glass transition in finite dimensions, leading to a rich interplay between glassiness and percolation physics. This advance suggests that the RLG can be used as a toy model to develop a first-principle description of particle hopping in structural glasses.

15.
Phys Rev E ; 102(4-1): 042605, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33212595

RESUMO

We recently argued that a self-propelled particle is formally equivalent to a system consisting of two subsystems coupled by a nonreciprocal interaction [Phys. Rev. E 100, 050603(R) (2019)2470-004510.1103/PhysRevE.100.050603]. Here, we show that this nonreciprocal coupling allows us to extract useful work from a single self-propelled particle maintained at constant temperature, by using an aligning interaction to control correlations between the particle's position and self-propulsion.

16.
Phys Rev E ; 102(2-1): 022607, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32942354

RESUMO

Active matter systems are driven out of equilibrium at the level of individual constituents. One widely studied class are systems of athermal particles that move under the combined influence of interparticle interactions and self-propulsions, with the latter evolving according to the Ornstein-Uhlenbeck stochastic process. Intuitively, these so-called active Ornstein-Uhlenbeck particle (AOUP) systems are farther from equilibrium for longer self-propulsion persistence times. Quantitatively, this is confirmed by the increasing equal-time velocity correlations (which are trivial in equilibrium) and by the increasing violation of the Einstein relation between the self-diffusion and mobility coefficients. In contrast, the entropy production rate, calculated from the ratio of the probabilities of the position space trajectory and its time-reversed counterpart, has a nonmonotonic dependence on the persistence time. Thus, it does not properly quantify the departure of AOUP systems from equilibrium.

17.
Soft Matter ; 16(30): 7165-7171, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32671375

RESUMO

The temperature dependence of the thermal conductivity of amorphous solids is markedly different from that of their crystalline counterparts, but exhibits universal behaviour. Sound attenuation is believed to be related to this universal behaviour. Recent computer simulations demonstrated that in the harmonic approximation sound attenuation Γ obeys quartic, Rayleigh scattering scaling for small wavevectors k and quadratic scaling for wavevectors above the Ioffe-Regel limit. However, simulations and experiments do not provide a clear picture of what to expect at finite temperatures where anharmonic effects become relevant. Here we study sound attenuation at finite temperatures for model glasses of various stability, from unstable glasses that exhibit rapid aging to glasses whose stability is equal to those created in laboratory experiments. We find several scaling laws depending on the temperature and stability of the glass. First, we find the large wavevector quadratic scaling to be unchanged at all temperatures. Second, we find that at small wavevectors Γ∼k1.5 for an aging glass, but Γ∼k2 when the glass does not age on the timescale of the calculation. For our most stable glass, we find that Γ∼k2 at small wavevectors, then a crossover to Rayleigh scattering scaling Γ∼k4, followed by another crossover to the quadratic scaling at large wavevectors. Our computational observation of this quadratic behavior reconciles simulation, theory and experiment, and will advance the understanding of the temperature dependence of thermal conductivity of glasses.

18.
Soft Matter ; 16(3): 775-783, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31830187

RESUMO

The temperature dependence of the thermal conductivity is linked to the nature of the energy transport at a frequency ω, which is quantified by thermal diffusivity d(ω). Here we study d(ω) for a poorly annealed glass and a highly stable glass prepared using the swap Monte Carlo algorithm. To calculate d(ω), we excite wave packets and find that the energy moves diffusively for high frequencies up to a maximum frequency, beyond which the energy stays localized. At intermediate frequencies, we find a linear increase of the square of the width of the wave packet with time, which allows for a robust calculation of d(ω), but the wave packet is no longer well described by a Gaussian as for high frequencies. In this intermediate regime, there is a transition from a nearly frequency independent thermal diffusivity at high frequencies to d(ω) ∼ ω-4 at low frequencies. For low frequencies the sound waves are responsible for energy transport and the energy moves ballistically. The low frequency behavior can be predicted using sound attenuation coefficients.

19.
Soft Matter ; 16(4): 914-920, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31868871

RESUMO

The universal anomalous vibrational and thermal properties of amorphous solids are believed to be related to the local variations of the elasticity. Recently it has been shown that the vibrational properties are sensitive to the glass's stability. Here we study the stability dependence of the local elastic constants of a simulated glass former over a broad range of stabilities, from a poorly annealed glass to a glass whose stability is comparable to laboratory exceptionally stable vapor deposited glasses. We show that with increasing stability the glass becomes more uniform as evidenced by a smaller variance of local elastic constants. We find that, according to the definition of local elastic moduli used in this work, the local elastic moduli are not spatially correlated.

20.
Phys Rev E ; 100(5-1): 050603, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31869934

RESUMO

We propose a generalization of stochastic thermodynamics to systems of active particles, which move under the combined influence of stochastic internal self-propulsions (activity) and a heat bath. The main idea is to consider joint trajectories of particles' positions and self-propulsions. It is then possible to exploit formal similarity of an active system and a system consisting of two subsystems interacting with different heat reservoirs and coupled by a nonsymmetric interaction. The resulting thermodynamic description closely follows the standard stochastic thermodynamics. In particular, total entropy production, Δs_{tot}, can be decomposed into housekeeping, Δs_{hk}, and excess, Δs_{ex}, parts. Both Δs_{tot} and Δs_{hk} satisfy fluctuation theorems. The average rate of the steady-state housekeeping entropy production can be related to the violation of the fluctuation-dissipation theorem via a Harada-Sasa relation. The excess entropy production enters into a Hatano-Sasa-like relation, which leads to a generalized Clausius inequality involving the change of the system's entropy and the excess entropy production. Interestingly, although the evolution of particles' self-propulsions is free and uncoupled from that of their positions, nontrivial steady-state correlations between these variables lead to the nonzero excess dissipation in the reservoir coupled to the self-propulsions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...