Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38893975

RESUMO

The availability of new-generation femtosecond lasers capable of delivering pulses with energies in the hundreds of mJ, or even in the joules range, has called for a revision of the effect of scaling spot size on the material distribution within the plasma plume. Employing a state-of-the-art Szatmári-type hybrid dye-excimer laser system emitting 248 nm pulses with a maximum energy of 20 mJ and duration of 600 fs, copper films were grown in the classical pulsed laser deposition geometry. The exceptionally clean temporal profile of the laser pulses yielded a femtosecond component of 4.18 ± 0.19 mJ, accompanied by a 0.22 ± 0.01 mJ ASE pedestal on the target surface. While varying the spot sizes, the plasma plume consistently exhibited an extremely forward-peaked distribution. Deposition rates, defined as peak thickness per number of pulses, ranged from 0.030 to 0.114 nm/pulse, with a gradual narrowing of the thickness distribution as the spot area increased from 0.085 to 1.01 mm2 while keeping the pulse energy constant. The material distribution on the silicon substrates was characterized using the f(Θ) = AcoskΘ + (1 - A)cospΘ formalism, revealing exponents characterizing the forward-peaked component of the thickness profile of the film material along the axes, ranging from k = 15 up to exceptionally high values exceeding 50, as the spot area increased. Consequently, spot size control and outstanding beam quality ensured that majority of the ablated material was confined to the central region of the plume, indicating the potential of PLD (pulsed laser deposition) for highly efficient localized deposition of exotic materials.

2.
Opt Express ; 32(10): 17038-17047, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38858896

RESUMO

Temporal cleaning of high-power infrared (IR) pulses generated by a Ti:Sapphire system is demonstrated by the use of the Nonlinear Fourier Filtering (NFF) method. In a proof-of-principle experiment suppression of up to 1000 is achieved for the temporal pedestal prior to the main pulse, with a moderate (20-25%) overall throughput. This includes the same suppression ratio for the picosecond coherent pedestal in the direct vicinity of the main pulse. Based on the instantaneous, intensity-dependent and high-order switching characteristics of NFF, excellent pulse cleaning performance is observed. The efficient, high-contrast removal of the coherent pedestal from the foot of the main pulse even if its duration is shorter than 100 fs is compared with the capability of the plasma mirror technique. Calculations are also performed, supporting the experimentally observed sharp intensity dependence of the switching process, pointing out the dominant role of the ionization-based refractive index change.

3.
Materials (Basel) ; 16(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36770274

RESUMO

Copper thin films are intended to serve as a cover layer of photocathodes that are deposited by ablating copper targets in a high vacuum by temporally clean 600 fs laser pulses at 248 nm. The extremely forward-peaked plume produced by the ultrashort UV pulses of high-energy contrast ensures fast film growth. The deposition rate, defined as peak thickness per number of pulses, rises from 0.03 to 0.11 nm/pulse with an increasing ablated area while keeping the pulse energy constant. The material distribution over the surface-to-be-coated can also effectively be controlled by tuning the dimensions of the ablated area: surface patterning from airbrush-like to broad strokes is available. The well-adhering films of uniform surface morphology consist of densely packed lentil-like particles of several hundred nm in diameter and several ten nm in height. Task-optimized ultrashort UV laser deposition is thereby an effective approach for the production of thin film patterns of predetermined geometry, serving e.g., as critical parts of photocathodes.

4.
Opt Express ; 27(12): 17377-17386, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-31252948

RESUMO

In this paper, improved operation of a high-contrast, high-brightness ultraviolet laser system is described. The laser system is based on a conventional short-pulse dye/excimer design, modified to contain 3 KrF excimer short-pulse amplifiers and the recently developed nonlinear Fourier-filtering stage for contrast improvement. The final amplifier accepts a beam size of ~4x4 cm2, producing 100 mJ energy of short-pulses using a two-beam interferometric multiplexing setup. Temporal measurements of the output showed positively chirped pulses of ~700 fs duration, beside a focusability of ~2 times the diffraction limit. Amplified spontaneous emission-as the only source of the temporal background-results in a focused intensity contrast of >1012 in the entire temporal window. These unique parameters give access to laser-matter interaction experiments above 1019 W/cm2 intensity at 248 nm.

5.
Opt Express ; 25(17): 20791-20797, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-29041757

RESUMO

Recently a novel method called nonlinear Fourier-filtering was suggested for temporal and spatial cleaning of high-brightness laser pulses. In this paper experimental demonstration of the associated spatial filtering of this method and significant improvement of the temporal filtering feature are presented. The formerly found limit of ~103 for the temporal contrast improvement is identified as diffraction effects caused by the limited numerical aperture of imaging. It is shown by numerical simulation that proper apodization of the object can lead to sufficiently higher limit (>108). Using an advanced experimental arrangement the improvement of >2 orders of magnitude is experimentally verified in the ultraviolet and an indirect proof is presented that the background caused by the optical arrangement is reduced below 10-7.

6.
Rev Sci Instrum ; 87(8): 083101, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27587094

RESUMO

It is demonstrated for the first time that plasma mirrors can be successfully applied for KrF laser systems. High reflectivity up to 70% is achieved by optimization of the beam quality on the plasma mirror. The modest spectral shift and the good reflected beam quality allow its applicability for high power laser systems for which a new arrangement is suggested.

7.
Rep Prog Phys ; 79(4): 046401, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27007146

RESUMO

The trajectory of discovery associated with the study of high-intensity nonlinear radiative interactions with matter and corresponding nonlinear modes of electromagnetic propagation through material that have been conducted over the last 50 years can be presented as a landscape in the intensity/quantum energy [I-hω] plane. Based on an extensive series of experimental and theoretical findings, a universal zone of anomalous enhanced electromagnetic coupling, designated as the fundamental nonlinear domain, can be defined. Since the lower boundaries of this region for all atomic matter correspond to hω ~ 10(3) eV and I ≈ 10(16) W cm(-2), it heralds a future dominated by x-ray and γ-ray studies of all phases of matter including nuclear states. The augmented strength of the interaction with materials can be generally expressed as an increase in the basic electromagnetic coupling constant in which the fine structure constant α → Z(2)α, where Z denotes the number of electrons participating in an ordered response to the driving field. Since radiative conditions strongly favoring the development of this enhanced electromagnetic coupling are readily produced in self-trapped plasma channels, the processes associated with the generation of nonlinear interactions with materials stand in natural alliance with the nonlinear mechanisms that induce confined propagation. An experimental example involving the Xe (4d(10)5s(2)5p(6)) supershell for which Z ≅ 18 that falls in the specified anomalous nonlinear domain is described. This yields an effective coupling constant of Z(2)α ≅ 2.4 > 1, a magnitude comparable to the strong interaction and a value rendering as useless conventional perturbative analyses founded on an expansion in powers of α. This enhancement can be quantitatively understood as a direct consequence of the dominant role played by coherently driven multiply-excited states in the dynamics of the coupling. It is also conclusively demonstrated by an abundance of data that the utterly peerless champion of the experimental campaign leading to the definition of the fundamental nonlinear domain was excimer laser technology. The basis of this unique role was the ability to satisfy simultaneously a triplet (ω, I, P) of conditions stating the minimal values of the frequency ω, intensity I, and the power P necessary to enable the key physical processes to be experimentally observed and controllably combined. The historical confluence of these developments creates a solid foundation for the prediction of future advances in the fundamental understanding of ultra-high power density states of matter. The atomic findings graciously generalize to the composition of a nuclear stanza expressing the accessibility of the nuclear domain. With this basis serving as the launch platform, a cadenza of three grand challenge problems representing both new materials and new interactions is presented for future solution; they are (1) the performance of an experimental probe of the properties of the vacuum state associated with the dark energy at an intensity approaching the Schwinger/Heisenberg limit, (2) the attainment of amplification in the γ-ray region (~1 MeV) and the discovery of a nuclear excimer, and (3) the determination of a path to the projected super-heavy nuclear island of stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...