Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemistryOpen ; 12(6): e202300060, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37259697

RESUMO

A heterogenized alternative to the homogeneous precapture of CO2 with amines and subsequent hydrogenation to MeOH was developed using aminated silica and a Ru-MACHOTM catalyst. Commercial mesoporous silica was modified with three different amino-silane monomers and used as support for the Ru catalyst. These composites were studied by TEM and solid-state NMR spectroscopy before and after the catalytic reaction. These catalytic reactions were conducted at 155 °C at a H2 and CO2 pressures of 75 and 2 bar, respectively, with the heterogeneous system (gas-solid) being probed with gas-phase infrared spectroscopy used to quantify the resulting products. High turnover number (TON) values were observed for the samples aminated with secondary amines.

2.
J Colloid Interface Sci ; 602: 480-489, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34139541

RESUMO

Self-aggregated colloids can be used for the preparation of materials, and we studied long rod-like aggregates formed on the evaporation of water from dispersed particles of colloidal hydrochar. The monodispersed hydrochar particles (100-200 nm) were synthesized by the hydrothermal carbonization of glucose and purified through dialysis. During the synthesis they formed colloidal dispersions which were electrostatically stable at intermediate to high pH and at low ion strengths. On the evaporation of water, macroscopically large rods formed from the dispersions at intermediate pH conditions. The rods formed at the solid-water interface orthogonally oriented with respect to the drying direction. Pyrolysis rendered the rods highly porous without qualitatively affecting their shape. A Cu-Si alloy was reactively infiltrated into the in-situ pyrolyzed hydrochars and composites of tricopper silicide (Cu3Si)-silicon carbide (SiC)/carbon formed. During this process, the Si atoms reacted with the C atoms, which in turned caused the alloy to wet and further react with the carbon. The shape of the underlying carbon template was maintained during the reactions, and the formed composite preparation was subsequently calcined into a Cu3Si-SiC-based replica of the rod-like assemblies of carbon-based colloidal particles. Transmission and scanning electron microscopy, and X-ray diffraction were used to study the shape, composition, and structure of the formed solids. Further studies of materials prepared with reactive infiltration of alloys into self-aggregated and carbon-based solids can be justified from a perspective of colloidal science, as well as the explorative use of hydrochar prepared from real biomass, exploration of the compositional space in relation to the reactive infiltration, and applications of the materials in catalysis.


Assuntos
Glucose , Diálise Renal , Compostos Inorgânicos de Carbono , Compostos de Silício
3.
ACS Omega ; 5(11): 5601-5607, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32226835

RESUMO

Global concerns regarding climate change and the energy crisis have stimulated, among other things, research on renewable and sustainable materials. In relation to that, hydrothermal carbonization of wet biomass has been shown to be a low-cost method for the production of hydrochars. Such hydrochars can be refined into materials that can be used in water purification, for CO2 capture, and in the energy sector. Here, we review the use of metal ions and particles to catalyze the formation of hydrochars and related hybrid materials. First, the effects of using silver, cobalt, tellurium, copper ions, and particles on the hydrothermal carbonization of simple sugars and biomass are discussed. Second, we discuss the structural effects of iron ions and particles on the hydrochars in conjunction with their catalytic effects on the carbonization. Among the catalysts, iron ions or oxides have low cost and allow magnetic features to be introduced in carbon-containing hybrid materials, which seems to be promising for commercial applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...