Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
MethodsX ; 8: 101340, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34430244

RESUMO

Genes encoding proteins 'toxic' to recombinant host are difficult for cloning/expression and recombinant clones are unstable. Even tightly controlled inducible T7-lac, PBAD, PL, PR promoters are not totally silent in an uninduced state and thus not adequate for highly toxic proteins. An innovative approach to engineering and expression of the gene, encoding bacterial alkaline phosphatase (BAP) is proposed. The native precursor enzyme contains a signal peptide at the N-terminus and is secreted to the Escherichia coli (E. coli) periplasm. The signal peptide is then removed that allows oxidation and formation of active dimers. To decrease toxicity of the bap gene, its secretion leader coding section was replaced with a N-terminal His6-tag. The gene was expressed in E. coli in a PBAD vector, resulting in the accumulation of soluble His6-BAP in the cytoplasm. The His6-BAP was neutral to the cells, as no maturation was possible in the reducing cytoplasm. The purified homogenous protein was further reactivated in a redox buffer containing the protein structure stabilizing cofactors. The His6-BAP exhibited high activity. A dephosphorylation protocol for all types of DNA termini was developed.The method appears well suited for the industrial production of BAP and can be applied to other problematic proteins.• Efficient toxic gene expression • Novel approach to toxic gene cloning, engineering, expression, purification and reactivation of the transiently inactivated enzyme • Scaled-up production of ultrapure BAP • Improved protocol for all types of DNA termini dephosphorylation.

2.
Microb Cell Fact ; 19(1): 166, 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811518

RESUMO

BACKGROUND: The biotechnology production of enzymes is often troubled by the toxicity of the recombinant products of cloned and expressed genes, which interferes with the recombinant hosts' metabolism. Various approaches have been taken to overcome these limitations, exemplified by tight control of recombinant genes or secretion of recombinant proteins. An industrial approach to protein production demands maximum possible yields of biosynthesized proteins, balanced with the recombinant host's viability. Bacterial alkaline phosphatase (BAP) from Escherichia coli (E. coli) is a key enzyme used in protein/antibody detection and molecular cloning. As it removes terminal phosphate from DNA, RNA and deoxyribonucleoside triphosphates, it is used to lower self-ligated vectors' background. The precursor enzyme contains a signal peptide at the N-terminus and is secreted to the E. coli periplasm. Then, the leader is clipped off and dimers are formed upon oxidation. RESULTS: We present a novel approach to phoA gene cloning, engineering, expression, purification and reactivation of the transiently inactivated enzyme. The recombinant bap gene was modified by replacing a secretion leader coding section with a N-terminal His6-tag, cloned and expressed in E. coli in a PBAD promoter expression vector. The gene expression was robust, resulting in accumulation of His6-BAP in the cytoplasm, exceeding 50% of total cellular proteins. The His6-BAP protein was harmless to the cells, as its natural toxicity was inhibited by the reducing environment within the E. coli cytoplasm, preventing formation of the active enzyme. A simple protocol based on precipitation and immobilized metal affinity chromatography (IMAC) purification yielded homogeneous protein, which was reactivated by dialysis into a redox buffer containing reduced and oxidized sulfhydryl group compounds, as well as the protein structure stabilizing cofactors Zn2+, Mg2+ and phosphate. The reconstituted His6-BAP exhibited high activity and was used to develop an efficient protocol for all types of DNA termini, including problematic ones (blunt, 3'-protruding). CONCLUSIONS: The developed method appears well suited for the industrial production of ultrapure BAP. Further, the method of transient inactivation of secreted toxic enzymes by conducting their biosynthesis in an inactive state in the cytoplasm, followed by in vitro reactivation, can be generally applied to other problematic proteins.


Assuntos
Fosfatase Alcalina/biossíntese , Fosfatase Alcalina/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Fosfatase Alcalina/isolamento & purificação , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Clonagem Molecular , Regulação Bacteriana da Expressão Gênica , Engenharia Genética , Microbiologia Industrial , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética
3.
PLoS One ; 13(4): e0195449, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29624616

RESUMO

Bacteriophage TP-84 is a well-characterized bacteriophage of historical interest. It is a member of the Siphoviridae, and infects a number of thermophilic Geobacillus (Bacillus) stearothermophilus strains. Its' 47.7-kbp double-stranded DNA genome revealed the presence of 81 coding sequences (CDSs) coding for polypeptides of 4 kDa or larger. Interestingly, all CDSs are oriented in the same direction, pointing to a dominant transcription direction of one DNA strand. Based on a homology search, a hypothetical function could be assigned to 31 CDSs. No RNA or DNA polymerase-coding genes were found on the bacteriophage genome indicating that TP-84 relies on the host's transcriptional and replication enzymes. The TP84 genome is tightly packed with CDSs, typically spaced by several-to-tens of bp or often overlapping. The genome contains five putative promoter-like sequences showing similarity to the host promoter consensus sequence and allowing for a 2-bp mismatch. In addition, ten putative rho-independent terminators were detected. Because the genome sequence shows essentially no similarity to any previously characterised bacteriophage, TP-84 should be considered a new species in an undefined genus within the Siphoviridae family. Thus a taxonomic proposal of a new Tp84virus genus has been accepted by the International Committee on Taxonomy of Viruses. The bioinformatics genome analysis was verified by confirmation of 33 TP-84 proteins, which included: a) cloning of a selected CDS in Escherichia coli, coding for a DNA single-stranded binding protein (SSB; gene TP84_63), b) purification and functional assays of the recombinant TP-84 SSB, which has been shown to improve PCR reactions, c) mass spectrometric (MS) analysis of TP-84 bacteriophage capsid proteins, d) purification of TP-84 endolysin activity, e) MS analysis of the host cells from infection time course.


Assuntos
Genoma Viral , Geobacillus stearothermophilus/virologia , Siphoviridae/genética , Composição de Bases , Sequência de Bases , Biologia Computacional , DNA Viral/genética , DNA Viral/metabolismo , Microscopia Eletrônica de Transmissão , Anotação de Sequência Molecular , Filogenia , Proteômica , Siphoviridae/classificação , Siphoviridae/fisiologia , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/fisiologia
5.
J Appl Genet ; 58(3): 409-414, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28349380

RESUMO

Candida sp. have been responsible for an increasing number of infections, especially in patients with immunodeficiency. Species-specific differentiation of Candida sp. is difficult in routine diagnosis. This identification can have a highly significant association in therapy and prophylaxis. This work has shown a new application of the terminal restriction fragment length polymorphism (t-RFLP) method in the molecular identification of six species of Candida, which are the most common causes of fungal infections. Specific for fungi homocitrate synthase gene was chosen as a molecular target for amplification. The use of three restriction enzymes, DraI, RsaI, and BglII, for amplicon digestion can generate species-specific fluorescence labeled DNA fragment profiles, which can be used to determine the diagnostic algorithm. The designed method can be a cost-efficient high-throughput molecular technique for the identification of six clinically important Candida species.


Assuntos
Candida/genética , Oxo-Ácido-Liases/genética , Polimorfismo de Fragmento de Restrição , Candida/enzimologia , DNA Fúngico/genética , Genes Fúngicos , Especificidade da Espécie
6.
BMC Microbiol ; 13: 131, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23758700

RESUMO

BACKGROUND: The global spread of bacterial resistance has given rise to a growing interest in new anti-bacterial agents with a new strategy of action. Pilicides are derivatives of ring-fused 2-pyridones which block the formation of the pili/fimbriae crucial to bacterial pathogenesis. They impair by means of a chaperone-usher pathway conserved in the Gram-negative bacteria of adhesive structures biogenesis. Pili/fimbriae of this type belong to two subfamilies, FGS and FGL, which differ in the details of their assembly mechanism. The data published to date have shown that pilicides inhibit biogenesis of type 1 and P pili of the FGS type which are encoded by uropathogenic E. coli strains. RESULTS: We evaluated the anti-bacterial activity of literature pilicides as blockers of the assembly of a model example of FGL-type adhesive structures--the Dr fimbriae encoded by a dra gene cluster of uropathogenic Escherichia coli strains. In comparison to the strain grown without pilicide, the Dr⁺ bacteria cultivated in the presence of the 3.5 mM concentration of pilicides resulted in a reduction of 75 to 87% in the adherence properties to CHO cells expressing Dr fimbrial DAF receptor protein. Using quantitative assays, we determined the amount of Dr fimbriae in the bacteria cultivated in the presence of 3.5 mM of pilicides to be reduced by 75 to 81%. The inhibition effect of pilicides is concentration dependent, which is a crucial property for their use as potential anti-bacterial agents. The data presented in this article indicate that pilicides in mM concentration effectively inhibit the adherence of Dr⁺ bacteria to the host cells--the crucial, initial step in bacterial pathogenesis. CONCLUSIONS: Structural analysis of the DraB chaperone clearly showed it to be a model of the FGL subfamily of chaperones. This permits us to conclude that analyzed pilicides in mM concentration are effective inhibitors of the assembly of adhesins belonging to the Dr family, and more speculatively, of other FGL-type adhesive organelles. The presented data and those published so far permit to speculate that based on the conservation of chaperone-usher pathway in Gram-negative bacteria , the pilicides are potential anti-bacterial agents with activity against numerous pathogens, the virulence of which is dependent on the adhesive structures of the chaperone-usher type.


Assuntos
Antibacterianos/farmacologia , Piridonas/farmacologia , Escherichia coli Uropatogênica/efeitos dos fármacos , Escherichia coli Uropatogênica/fisiologia , Adesinas de Escherichia coli/biossíntese , Animais , Células CHO , Adesão Celular/efeitos dos fármacos , Cricetinae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...