Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(7): 107483, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38897569

RESUMO

The voltage-gated Kv1.5 potassium channel, conducting the ultra-rapid delayed rectifier K+ current (IKur) in human cells, plays important roles in the repolarization of atrial action potentials and regulation of the vascular tone. We previously reported that activation of protein kinase C (PKC) by phorbol 12-myristate 13-acetate (PMA) induces endocytic degradation of cell-surface Kv1.5 channels, and a point mutation removing the phosphorylation site, T15A, in the N terminus of Kv1.5 abolished the PMA-effect. In the present study, using mutagenesis, patch clamp recording, Western blot analysis, and immunocytochemical staining, we demonstrate that ubiquitination is involved in the PMA-mediated degradation of mature Kv1.5 channels. Since the expression of the Kv1.4 channel is unaffected by PMA treatment, we swapped the N- and/or C-termini between Kv1.5 and Kv1.4. We found that the N-terminus alone did not but both N- and C-termini of Kv1.5 did confer PMA sensitivity to mature Kv1.4 channels, suggesting the involvement of Kv1.5 C-terminus in the channel ubiquitination. Removal of each of the potential ubiquitination residue Lysine at position 536, 565, and 591 by Arginine substitution (K536R, K565R, and K591R) had little effect, but removal of all three Lysine residues with Arginine substitution (3K-R) partially reduced PMA-mediated Kv1.5 degradation. Furthermore, removing the cysteine residue at position 604 by Serine substitution (C604S) drastically reduced PMA-induced channel degradation. Removal of the three Lysines and Cys604 with a quadruple mutation (3K-R/C604S) or a truncation mutation (Δ536) completely abolished the PKC activation-mediated degradation of Kv1.5 channels. These results provide mechanistic insight into PKC activation-mediated Kv1.5 degradation.


Assuntos
Canal de Potássio Kv1.5 , Proteína Quinase C , Proteólise , Acetato de Tetradecanoilforbol , Ubiquitinação , Canal de Potássio Kv1.5/metabolismo , Canal de Potássio Kv1.5/genética , Humanos , Proteína Quinase C/metabolismo , Proteína Quinase C/genética , Acetato de Tetradecanoilforbol/farmacologia , Células HEK293 , Animais , Fosforilação , Membrana Celular/metabolismo , Canal de Potássio Kv1.4/metabolismo , Canal de Potássio Kv1.4/genética
2.
J Biol Chem ; 296: 100514, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33676894

RESUMO

The voltage-gated potassium channel Kv1.5 plays important roles in the repolarization of atrial action potentials and regulation of the vascular tone. While the modulation of Kv1.5 function has been well studied, less is known about how the protein levels of Kv1.5 on the cell membrane are regulated. Here, through electrophysiological and biochemical analyses of Kv1.5 channels heterologously expressed in HEK293 cells and neonatal rat ventricular myocytes, as well as native Kv1.5 in human induced pluripotent stem cell (iPSC)-derived atrial cardiomyocytes, we found that activation of protein kinase C (PKC) with phorbol 12-myristate 13-acetate (PMA, 10 nM) diminished Kv1.5 current (IKv1.5) and protein levels of Kv1.5 in the plasma membrane. Mechanistically, PKC activation led to monoubiquitination and degradation of the mature Kv1.5 proteins. Overexpression of Vps24, a protein that sorts transmembrane proteins into lysosomes via the multivesicular body (MVB) pathway, accelerated, whereas the lysosome inhibitor bafilomycin A1 completely prevented PKC-mediated Kv1.5 degradation. Kv1.5, but not Kv1.1, Kv1.2, Kv1.3, or Kv1.4, was uniquely sensitive to PMA treatment. Sequence alignments suggested that residues within the N terminus of Kv1.5 are essential for PKC-mediated Kv1.5 reduction. Using N-terminal truncation as well as site-directed mutagenesis, we identified that Thr15 is the target site for PKC that mediates endocytic degradation of Kv1.5 channels. These findings indicate that alteration of protein levels in the plasma membrane represents an important regulatory mechanism of Kv1.5 channel function under PKC activation conditions.


Assuntos
Endocitose , Células-Tronco Pluripotentes Induzidas/metabolismo , Canal de Potássio Kv1.5/metabolismo , Proteína Quinase C/metabolismo , Ubiquitinação , Animais , Animais Recém-Nascidos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Canal de Potássio Kv1.5/genética , Fosforilação , Proteína Quinase C/genética , Ratos , Transdução de Sinais
3.
J Pharmacol Exp Ther ; 377(2): 265-272, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33674391

RESUMO

Drug-induced long QT syndrome (LQTS) is an established cardiac side effect of a wide range of medications and represents a significant concern for drug safety. The rapidly and slowly activating delayed rectifier K+ currents, mediated by channels encoded by the human ether-a-go-go-related gene (hERG) and KCNQ1 + KCNE1, respectively, are two main currents responsible for ventricular repolarization. The common cause for drugs to induce LQTS is through impairing the hERG channel. For the recent emergence of COVID-19, caused by severe acute respiratory syndrome coronavirus 2, several drugs have been investigated as potential therapies; however, there are concerns about their QT prolongation risk. Here, we studied the effects of chloroquine, hydroxychloroquine, azithromycin, and remdesivir on hERG channels. Our results showed that although chloroquine acutely blocked hERG current (IhERG), with an IC50 of 3.0 µM, hydroxychloroquine acutely blocked IhERG 8-fold less potently, with an IC50 of 23.4 µM. Azithromycin and remdesivir did not acutely affect IhERG When these drugs were added at 10 µM to the cell culture medium for 24 hours, remdesivir increased IhERG by 2-fold, which was associated with an increased mature hERG channel expression. In addition, these four drugs did not acutely or chronically affect KCNQ1 + KCNE1 channels. Our data provide insight into COVID-19 drug-associated LQTS and cardiac safety concerns. SIGNIFICANCE STATEMENT: This work demonstrates that, among off-label potential COVID-19 treatment drugs chloroquine, hydroxychloroquine, azithromycin, and remdesivir, the former two drugs block hERG potassium channels, whereas the latter two drugs do not. All four drugs do not affect KCNQ1 + KCNE1. As hERG and KCNQ1 + KCNE1 are two main K+ channels responsible for ventricular repolarization, and most drugs that induce long QT syndrome (LQTS) do so by impairing hERG channels, these data provide insight into COVID-19 drug-associated LQTS and cardiac safety concerns.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Azitromicina/farmacologia , Tratamento Farmacológico da COVID-19 , Cloroquina/farmacologia , Canal de Potássio ERG1/antagonistas & inibidores , Hidroxicloroquina/farmacologia , Monofosfato de Adenosina/farmacologia , Monofosfato de Adenosina/uso terapêutico , Alanina/farmacologia , Alanina/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Azitromicina/uso terapêutico , COVID-19/metabolismo , Cloroquina/uso terapêutico , Relação Dose-Resposta a Droga , Canal de Potássio ERG1/metabolismo , Células HEK293 , Humanos , Hidroxicloroquina/uso terapêutico , Bloqueadores dos Canais de Potássio/farmacologia , Bloqueadores dos Canais de Potássio/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...