Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 15226, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315949

RESUMO

Targeted DNA methylation is a technique that aims to methylate cytosines in selected genomic loci. In the most widely used approach a CG-specific DNA methyltransferase (MTase) is fused to a sequence specific DNA binding protein, which binds in the vicinity of the targeted CG site(s). Although the technique has high potential for studying the role of DNA methylation in higher eukaryotes, its usefulness is hampered by insufficient methylation specificity. One of the approaches proposed to suppress methylation at unwanted sites is to use MTase variants with reduced DNA binding affinity. In this work we investigated how methylation specificity of chimeric MTases containing variants of the CG-specific prokaryotic MTase M.SssI fused to zinc finger or dCas9 targeting domains is influenced by mutations affecting catalytic activity and/or DNA binding affinity of the MTase domain. Specificity of targeted DNA methylation was assayed in E. coli harboring a plasmid with the target site. Digestions of the isolated plasmids with methylation sensitive restriction enzymes revealed that specificity of targeted DNA methylation was dependent on the activity but not on the DNA binding affinity of the MTase. These results have implications for the design of strategies of targeted DNA methylation.


Assuntos
Metilação de DNA , DNA Bacteriano/metabolismo , DNA-Citosina Metilases/metabolismo , Escherichia coli/genética , Sequência de Bases , Sítios de Ligação , Ligação Proteica , Dedos de Zinco
2.
Nucleic Acids Res ; 48(5): e28, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-31980824

RESUMO

We have developed a simple method called I-Block assay, which can detect sequence-specific binding of proteins to DNA in Escherichia coli. The method works by detecting competition between the protein of interest and RNA polymerase for binding to overlapping target sites in a plasmid-borne lacI promoter variant. The assay utilizes two plasmids and an E. coli host strain, from which the gene of the Lac repressor (lacI) has been deleted. One of the plasmids carries the lacI gene with a unique NheI restriction site created in the lacI promoter. The potential recognition sequences of the tested protein are inserted into the NheI site. Introduction of the plasmids into the E. coliΔlacI host represses the constitutive ß-galactosidase synthesis of the host bacterium. If the studied protein expressed from a compatible plasmid binds to its target site in the lacI promoter, it will interfere with lacI transcription and lead to increased ß-galactosidase activity. The method was tested with two zinc finger proteins, with the lambda phage cI857 repressor, and with CRISPR-dCas9 targeted to the lacI promoter. The I-Block assay was shown to work with standard liquid cultures, with cultures grown in microplate and with colonies on X-gal indicator plates.


Assuntos
Bioensaio , DNA Bacteriano/genética , RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/genética , Transcrição Gênica , Sequência de Bases , Sítios de Ligação , Ligação Competitiva , Sistemas CRISPR-Cas , DNA Bacteriano/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Repressores Lac/deficiência , Repressores Lac/genética , Plasmídeos/química , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...