Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38857570

RESUMO

BACKGROUND: Three-dimensional (3D) ultrasound (US) imaging has shown promise in non-invasive monitoring of changes in the lateral brain ventricles of neonates suffering from intraventricular hemorrhaging. Due to the poorly defined anatomical boundaries and low signal-to-noise ratio, fully supervised methods for segmentation of the lateral ventricles in 3D US images require a large dataset of annotated images by trained physicians, which is tedious, time-consuming, and expensive. Training fully supervised segmentation methods on a small dataset may lead to overfitting and hence reduce its generalizability. Semi-supervised learning (SSL) methods for 3D US segmentation may be able to address these challenges but most existing SSL methods have been developed for magnetic resonance or computed tomography (CT) images. PURPOSE: To develop a fast, lightweight, and accurate SSL method, specifically for 3D US images, that will use unlabeled data towards improving segmentation performance. METHODS: We propose an SSL framework that leverages the shape-encoding ability of an autoencoder network to enforce complex shape and size constraints on a 3D U-Net segmentation model. The autoencoder created pseudo-labels, based on the 3D U-Net predicted segmentations, that enforces shape constraints. An adversarial discriminator network then determined whether images came from the labeled or unlabeled data distributions. We used 887 3D US images, of which 87 had manually annotated labels and 800 images were unlabeled. Training/validation/testing sets of 25/12/50, 25/12/25 and 50/12/25 images were used for model experimentation. The Dice similarity coefficient (DSC), mean absolute surface distance (MAD), and absolute volumetric difference (VD) were used as metrics for comparing to other benchmarks. The baseline benchmark was the fully supervised vanilla 3D U-Net while dual task consistency, shape-aware semi-supervised network, correlation-aware mutual learning, and 3D U-Net Ensemble models were used as state-of-the-art benchmarks with DSC, MAD, and VD as comparison metrics. The Wilcoxon signed-rank test was used to test statistical significance between algorithms for DSC and VD with the threshold being p < 0.05 and corrected to p < 0.01 using the Bonferroni correction. The random-access memory (RAM) trace and number of trainable parameters were used to compare the computing efficiency between models. RESULTS: Relative to the baseline 3D U-Net model, our shape-encoding SSL method reported a mean DSC improvement of 6.5%, 7.7%, and 4.1% with a 95% confidence interval of 4.2%, 5.7%, and 2.1% using image data splits of 25/12/50, 25/12/25, and 50/12/25, respectively. Our method only used a 1GB increase in RAM compared to the baseline 3D U-Net and required less than half the RAM and trainable parameters compared to the 3D U-Net ensemble method. CONCLUSIONS: Based on our extensive literature survey, this is one of the first reported works to propose an SSL method designed for segmenting organs in 3D US images and specifically one that incorporates unlabeled data for segmenting neonatal cerebral lateral ventricles. When compared to the state-of-the-art SSL and fully supervised learning methods, our method yielded the highest DSC and lowest VD while being computationally efficient.

2.
Med Phys ; 50(10): 6215-6227, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36964964

RESUMO

BACKGROUND: Transperineal ultrasound (TPUS) is a valuable imaging tool for evaluating patients with pelvic floor disorders, including pelvic organ prolapse (POP). Currently, measurements of anatomical structures in the mid-sagittal plane of 2D and 3D US volumes are obtained manually, which is time-consuming, has high intra-rater variability, and requires an expert in pelvic floor US interpretation. Manual segmentation and biometric measurement can take 15 min per 2D mid-sagittal image by an expert operator. An automated segmentation method would provide quantitative data relevant to pelvic floor disorders and improve the efficiency and reproducibility of segmentation-based biometric methods. PURPOSE: Develop a fast, reproducible, and automated method of acquiring biometric measurements and organ segmentations from the mid-sagittal plane of female 3D TPUS volumes. METHODS: Our method used a nnU-Net segmentation model to segment the pubis symphysis, urethra, bladder, rectum, rectal ampulla, and anorectal angle in the mid-sagittal plane of female 3D TPUS volumes. We developed an algorithm to extract relevant biometrics from the segmentations. Our dataset included 248 3D TPUS volumes, 126/122 rest/Valsalva split, from 135 patients. System performance was assessed by comparing the automated results with manual ground truth data using the Dice similarity coefficient (DSC) and average absolute difference (AD). Intra-class correlation coefficient (ICC) and time difference were used to compare reproducibility and efficiency between manual and automated methods respectively. High ICC, low AD and reduction in time indicated an accurate and reliable automated system, making TPUS an efficient alternative for POP assessment. Paired t-test and non-parametric Wilcoxon signed-rank test were conducted, with p < 0.05 determining significance. RESULTS: The nnU-Net segmentation model reported average DSC and p values (in brackets), compared to the next best tested model, of 87.4% (<0.0001), 68.5% (<0.0001), 61.0% (0.1), 54.6% (0.04), 49.2% (<0.0001) and 33.7% (0.02) for bladder, rectum, urethra, pubic symphysis, anorectal angle, and rectal ampulla respectively. The average ADs for the bladder neck position, bladder descent, rectal ampulla descent and retrovesical angle were 3.2 mm, 4.5 mm, 5.3 mm and 27.3°, respectively. The biometric algorithm had an ICC > 0.80 for the bladder neck position, bladder descent and rectal ampulla descent when compared to manual measurements, indicating high reproducibility. The proposed algorithms required approximately 1.27 s to analyze one image. The manual ground truths were performed by a single expert operator. In addition, due to high operator dependency for TPUS image collection, we would need to pursue further studies with images collected from multiple operators. CONCLUSIONS: Based on our search in scientific databases (i.e., Web of Science, IEEE Xplore Digital Library, Elsevier ScienceDirect and PubMed), this is the first reported work of an automated segmentation and biometric measurement system for the mid-sagittal plane of 3D TPUS volumes. The proposed algorithm pipeline can improve the efficiency (1.27 s compared to 15 min manually) and has high reproducibility (high ICC values) compared to manual TPUS analysis for pelvic floor disorder diagnosis. Further studies are needed to verify this system's viability using multiple TPUS operators and multiple experts for performing manual segmentation and extracting biometrics from the images.


Assuntos
Distúrbios do Assoalho Pélvico , Diafragma da Pelve , Humanos , Feminino , Diafragma da Pelve/diagnóstico por imagem , Imageamento Tridimensional/métodos , Reprodutibilidade dos Testes , Algoritmos , Ultrassonografia/métodos
3.
Med Phys ; 49(2): 1034-1046, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34958147

RESUMO

BACKGROUND: Intraventricular hemorrhaging (IVH) within cerebral lateral ventricles affects 20-30% of very low birth weight infants (<1500 g). As the ventricles increase in size, the intracranial pressure increases, leading to post-hemorrhagic ventricle dilatation (PHVD), an abnormal enlargement of the head. The most widely used imaging tool for measuring IVH and PHVD is cranial two-dimensional (2D) ultrasound (US). Estimating volumetric changes over time with 2D US is unreliable due to high user variability when locating the same anatomical location at different scanning sessions. Compared to 2D US, three-dimensional (3D) US is more sensitive to volumetric changes in the ventricles and does not suffer from variability in slice acquisition. However, 3D US images require segmentation of the ventricular surface, which is tedious and time-consuming when done manually. PURPOSE: A fast, automated ventricle segmentation method for 3D US would provide quantitative information in a timely manner when monitoring IVH and PHVD in pre-term neonates. To this end, we developed a fast and fully automated segmentation method to segment neonatal cerebral lateral ventricles from 3D US images using deep learning. METHODS: Our method consists of a 3D U-Net ensemble model composed of three U-Net variants, each highlighting various aspects of the segmentation task such as the shape and boundary of the ventricles. The ensemble is made of a U-Net++, attention U-Net, and U-Net with a deep learning-based shape prior combined using a mean voting strategy. We used a dataset consisting of 190 3D US images, which was separated into two subsets, one set of 87 images contained both ventricles, and one set of 103 images contained only one ventricle (caused by limited field-of-view during acquisition). We conducted fivefold cross-validation to evaluate the performance of the models on a larger amount of test data; 165 test images of which 75 have two ventricles (two-ventricle images) and 90 have one ventricle (one-ventricle images). We compared these results to each stand-alone model and to previous works including, 2D multiplane U-Net and 2D SegNet models. RESULTS: Using fivefold cross-validation, the ensemble method reported a Dice similarity coefficient (DSC) of 0.720 ± 0.074, absolute volumetric difference (VD) of 3.7 ± 4.1 cm3 , and a mean absolute surface distance (MAD) of 1.14 ± 0.41 mm on 75 two-ventricle test images. Using 90 test images with a single ventricle, the model after cross-validation reported DSC, VD, and MAD values of 0.806 ± 0.111, 3.5 ± 2.9 cm3 , and 1.37 ± 1.70 mm, respectively. Compared to alternatives, the proposed ensemble yielded a higher accuracy in segmentation on both test data sets. Our method required approximately 5 s to segment one image and was substantially faster than the state-of-the-art conventional methods. CONCLUSIONS: Compared to the state-of-the-art non-deep learning methods, our method based on deep learning was more efficient in segmenting neonatal cerebral lateral ventricles from 3D US images with comparable or better DSC, VD, and MAD performance. Our dataset was the largest to date (190 images) for this segmentation problem and the first to segment images that show only one lateral cerebral ventricle.


Assuntos
Ventrículos Cerebrais , Imageamento Tridimensional , Ventrículos Cerebrais/diagnóstico por imagem , Ventrículos do Coração/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Recém-Nascido , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...